精英家教网 > 初中数学 > 题目详情

【题目】正方形ABCD的边长AB=2,EAB的中点,FBC的中点,AF分别与DE、BD相交于点M,N,则MN的长为(  )

A. B. ﹣1 C. D.

【答案】C

【解析】

首先过FFH⊥ADH,交EDO,于是得到FH=AB=2,根据勾股定理求得AF,根据平行线分线段成比例定理求得OH,由相似三角形的性质求得AMAF的长,根据相似三角形的性质,求得AN的长,即可得到结论.

解:过FFH⊥ADH,交EDO,则FH=AB=2,

∵BF=FC,BC=AD=2,
∴BF=AH=1,FC=HD=1,

∴AF= = = ,

∵OH∥AE,

,

∴OH= ,

∴OF=FH-OH=2- = ,

∵AE∥FO,
∴△AME∽FMO,

,

∴AM=AF= ,

∵AD∥BF,
∴△AND∽△FNB,

,

∴AN=2NF= ,

∴MN=AN-AM= .

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知中,,过顶点作射线.

1)当射线外部时,如图①,点在射线上,连结,已知.

①试证明是直角三角形;

②求线段的长.(用含的代数式表示)

2)当射线内部时,如图②,过点于点,连结,请写出线段的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知ABC中,AB=AC=BC=10厘米,MN分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,MN同时停止运动.

1MN同时运动几秒后,MN两点重合?

2MN同时运动几秒后,可得等边三角形AMN

3MNBC边上运动时,能否得到以MN为底边的等腰AMN,如果存在,请求出此时MN运动的时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一次函数为常数)的图像位于轴下方的部分沿轴翻折到轴上方,和一次函数为常数)的图像位于轴及上方的部分组成“”型折线,过点轴的平行线,若该“”型折线在直线下方的点的横坐标满足,则的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)在中,(如图1),有怎样的数量关系?试证明你的结论.

2)图2,在四边形中,相于点,求长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DABC内一点,EABC外一点,且∠ABC=∠DBE,∠3=∠4

求证:(1ABD∽△CBE

2ABC∽△DBE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABCD是边长为1的正方形,O是正方形的中心,Q是边CD上一个动点(点Q不与点C、D重合),直线AQBC的延长线交于点E,AEBD于点P.设DQ=x.

(1)填空:当时,的值为   

(2)如图2,直线EOAB于点G,若BG=y,求y关于x之间的函数关系式;

(3)在第(2)小题的条件下,是否存在点Q,使得PGBC?若存在,求x的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程mx2+(3m+1)x+3=0.

(1)求证:该方程有两个实数根;

(2)如果抛物线y=mx2+(3m+1)x+3x轴交于A、B两个整数点(点A在点B左侧),且m为正整数,求此抛物线的表达式;

(3)在(2)的条件下,抛物线y=mx2+(3m+1)x+3y轴交于点C,点B关于y轴的对称点为D,设此抛物线在﹣3≤x≤﹣之间的部分为图象G,如果图象G向右平移n(n>0)个单位长度后与直线CD有公共点,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.

(1)请直接写出yx之间的函数关系式;

(2)如果每天获得160元的利润,销售单价为多少元?

(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?

查看答案和解析>>

同步练习册答案