【题目】如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点,点A与点B不重合,直线AB与x轴交于点P(x0,0),与y轴交于点C.
(1)若A、B两点坐标分别为(1,4),(4,y2),求点P的坐标;
(2)若b=y1+1,x0=6,且y1=2y2,求A,B两点的坐标;
(3)若将(1)中的点A,B绕原点O顺时针旋转90°,A点对应的点为A′,B点的对应点为B′点,连接AB′,A′B′,动点M从A点出发沿线段AB′以每秒1个单位长度的速度向终点B′运动;动点N同时从B′点出发沿线段B′A′以每秒1个单位长度的速度向终点A′运动,当其中一个点停止运动时另一个点也随之停止运动.设运动的时间为t秒,试探究:是否存在使△MNB′为等腰直角三角形的t值,若存在,求出t的值;若不存在,说明理由.
【答案】(1)P(5,0);(2)A(2,2),B(4,1);(3)存在,t的值为8﹣8或16﹣8.
【解析】
(1)先把A(1,3)),B(3,y2)代入y=求得反比例函数的解析式,进而求得B的坐标,然后把A、B代入y=ax+b利用待定系数法即可求得直线的解析式,继而即可求得P的坐标;
(2)作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,得出,,根据题意得出,,从而求得B( y1),然后根据k=xy得出x1y1=y1,求得x1=2,代入,解得y1=2,即可求得A、B的坐标;
(3)如图2,根据旋转的性质得到B′(1,-4),求得AB′=8,求得AM=BN=t,B′M=8-t,①当∠B′N1M1=90°,②当∠B′M2N2=90°,根据等腰直角三角形的性质即可得到结论.
(1)∵直线y=ax+b与双曲线y=(x>0)交于A(1,4)
∴k=1×4=4,
∴y=,
∵B(4,y2)在反比例函数的图象上,
∴y2==1,
∴B(4,1),
∵直线y=ax+b经过A、B两点,
∴,解得,
∴直线为y=-x+5,
令y=0,则x=5,
∴P(5,0);
(2)如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,
则AD∥BG∥x轴,AE∥BF∥y轴,
∴,
∵b=y1+1,y1=2y2,
∴,,
∴B(y1),∵A,B两点都是反比例函数图象上的点,
∴x1y1=y1,
解得x1=2,
代入,解得y1=2,
∴A(2,2),B(4,1);
(3)存在,
如图2,∵A、B两点坐标分别为(1,4),(4,1),将B绕原点O顺时针旋转90°,
∴B′(1,-4),
∴AB′=8,
由题意得:AM=BN=t,
∴B′M=8-t,
∵△MNB′为等腰直角三角形,
∴①当∠B′N1M1=90°,即B′M1=B′N1,
∴8-t=t,
解得:t=8-8;
②当∠B′M2N2=90°,即B′N2=B′M2,
∴t=(8-t),
解得:t=16-8;
综上所述,t的值为8-8或16-8.
科目:初中数学 来源: 题型:
【题目】如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.
(1)求证:四边形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:等腰三角形中底边与腰的比叫作底角的邻对(can).如图①,在△ABC中,AB=AC,底角∠B的邻对记作canB,这时canB=.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:
(1) . can30°=______ __;
(2) . 如图②,已知在△ABC中,AB=AC,canB=,S△ABC=24,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y= (k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是( )
A. (,0)B. (,0)C. (,0)D. (,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把1,1,2,3,5,8,13,21,…组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,弧P1P2,弧P2P3,弧P3P4,…得到斐波那契螺旋线,然后依次连接P1P2,P2P3,P3P4得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上P10的点的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A.
求抛物线顶点M的坐标;
若点A的坐标为,轴,交抛物线于点B,求点B的坐标;
在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年全国青少年禁毒知识竞赛开始以来,永州市青少年学生跃参如,掀起了学习禁毒知识的热潮,禁毒知识竞赛的成绩分为四个等级:优秀,良好,及格,不及格.为了了解我市广大学生参加禁毒知识竞赛的成绩,抽取了部分学生的成绩,根据抽查结果,绘制了如下两幅不完整的统计图
(1)本次抽查的人数是 ;
(2)扇形统计图中不及格学生所占的圆心角的度数为 度;
(3)补全条形统计图;
(4)若某校有2000名学生,请你估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=mx2﹣(2m+1)x+m﹣5的图象与x轴有两个公共点.
(1)求m的取值范围;
(2)若m取满足条件的最小的整数,当n≤x≤1时,函数值y的取值范围是﹣6≤y≤24,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,并交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D.
(1)求证:四边形CDEF是平行四边形;
(2)若BC=3,=2,求BG的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com