【题目】小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.
(一)猜测探究
在中,,是平面内任意一点,将线段绕点按顺时针方向旋转与相等的角度,得到线段,连接.
(1)如图1,若是线段上的任意一点,请直接写出与的数量关系是 ,与的数量关系是 ;
(2)如图2,点是延长线上点,若是内部射线上任意一点,连接,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.
(二)拓展应用
如图3,在中,,,,是上的任意点,连接,将绕点按顺时针方向旋转,得到线段,连接.求线段长度的最小值.
【答案】(一)(1)结论:,.理由见解析;(2)如图2中,①中结论仍然成立.理由见解析;(二)的最小值为.
【解析】
(一)①结论:,.根据证明≌即可.
②①中结论仍然成立.证明方法类似.
(二)如图3中,在上截取,连接,作于,作于.理由全等三角形的性质证明,推出当的值最小时,的值最小,求出的值即可解决问题.
(一)(1)结论:,.
理由:如图1中,
∵,
∴,
∴,
∵,,
∴≌(),
∴.
故答案为,.
(2)如图2中,①中结论仍然成立.
理由:∵,
∴,
∴,
∵,,
∴≌(),
∴.
(二)如图3中,在上截取,连接,作于,作于.
∵,
∴,
∵,,
∴≌(),
∴,
∴当的值最小时,的值最小,
在中,∵,,
∴,
∵,
∴,
∴,
在,∵,
∴,
根据垂线段最短可知,当点与重合时,的值最小,
∴的最小值为.
科目:初中数学 来源: 题型:
【题目】将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为( )
A. ﹣或﹣12B. ﹣或2C. ﹣12或2D. ﹣或﹣12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一副三角板按如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O、与D1E1相交于点F.
(1)求∠OFE1的度数;
(2)求线段AD1的长;
(3)若把△DCE绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=30°,∠C=90°,E是斜边AB的中点,点P为AC边上一动点,若Rt△ABC的直角边AC=4,则PB+PE的最小值等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣2a与x轴交于点A和点B(1,0),与y轴将于点C(0,﹣).
(1)求抛物线的解析式;
(2)若点D(2,n)是抛物线上的一点,在y轴左侧的抛物线上存在点T,使△TAD的面积等于△TBD的面积,求出所有满足条件的点T的坐标;
(3)直线y=kx﹣k+2,与抛物线交于两点P、Q,其中在点P在第一象限,点Q在第二象限,PA交y轴于点M,QA交y轴于点N,连接BM、BN,试判断△BMN的形状并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形OABC的顶点A(-8,0),C(0,6),点D是BC边上的中点,抛物线y=ax2+bx经过A,D两点,如图所示.
(1)求点D关于y轴的对称点D′的坐标及a,b的值;
(2)将抛物线y=ax2+bx向下平移,记平移后点A的对应点为A1,点D的对应点为D1,当抛物线平移到某个位置时,恰好使得点O是y轴上到A1,D1两点距离之和OA1+OD1最短的一点,求平移后的抛物线解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).
(1)求灯杆CD的高度;
(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.
(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com