精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(
A.
B.2 ﹣2
C.2 ﹣2
D.4

【答案】B
【解析】解:如图,
∵AE⊥BE,
∴点E在以AB为直径的半⊙O上,
连接CO交⊙O于点E′,
∴当点E位于点E′位置时,线段CE取得最小值,
∵AB=4,
∴OA=OB=OE′=2,
∵BC=6,
∴OC= = =2
则CE′=OC﹣OE′=2 ﹣2,
故选:B.
【考点精析】本题主要考查了矩形的性质和圆周角定理的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将边长为ab、对角线长为c的长方形纸片,绕点顺时针旋转得到长方形,连接,则四边形为梯形,请通过该图验证勾股定理(求证).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACDE垂直平分AB.若BEACAFBC,垂足分别为点EF,连接EF,则∠EFC_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC C=90°,AD ABC 的角平分线,DEAB E,AC=BE.

(1)求证:AD=BD;

(2)B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰直角ABC,C=90°,点D是斜边AB的中点,EAC上的动点、EDF=90°,DFBC 于点F.

(1) DEAC,DFBC 时,如图1),我们很容易得出:SDEF+SCEF=SABC.

(2)如图2,DE AC不垂直,且点E在线段AC上时,(1)中的结论是否成立,如果不成立,请说明理由;如果成立,请证明.

(3)当点E运动到AC延长线上,其他条件不变,请把图3补充完整,直接写出 SDEF,SCEF,SABC的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,∠AOB=30°,点A坐标为(2,0),过A作AA1⊥OB,垂足为点A1;过点A1作A1A2⊥x轴,垂足为点A2;再过点A2作A2A3⊥OB,垂足为点A3;则A2A3=;再过点A3作A3A4⊥x轴,垂足为点A4…;这样一直作下去,则A2017的纵坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,六边形ABCDEF的六个内角都相等.若AB=1BC=CD=3DE=2,则这个六边形的周长等于_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造,根据预算,共需资金1575万元,改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.

(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?

(2我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担。若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元。请你通过计算求出有几种改造方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的边长为12,D,EBC的三等分点,M,N分别为AB,AC上的动点,则四边形DENM周长的最小值是_________.

查看答案和解析>>

同步练习册答案