分析 根据全等三角形的性质得到CD=AF,证明∴△DGC≌△AGF,根据全等三角形的性质和角平分线的判定得到∠CBG=∠FBG,根据三角形内角和定理计算即可.
解答 解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,
∴BC=BF,BD=BA,
∴CD=AF,
在△DGC和△AGF中,
$\left\{\begin{array}{l}{∠D=∠A}\\{∠DGC=∠AGF}\\{CD=AF}\end{array}\right.$,
∴△DGC≌△AGF,
∴GC=GF,又∠ACB=∠DFB=90°,
∴∠CBG=∠FBG,
∴∠GBF=(90°-28°)÷2=31°.
点评 本题考查的是全等三角形的性质角平分线的判定,掌握全等三角形的对应边相等、对应角相等是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 进价(元/只) | 售价(元/只) | |
| 甲型 | 25 | 30 |
| 乙型 | 45 | 60 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com