【题目】如图:有一块余料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm.
(1)如果把它加工成长方形零件,使长方形的一边在BC上,其余两个顶点分别在AB、AC上,设长方形宽xmm,面积为ymm2,那么宽为多少时,其面积最大.最大面积是多少?
(2)若以BC的中点O为原点建立平面直角坐标系,B(-60,0),AD=BD.
求过A、B、C三点的抛物线解析式;
在此抛物线对称轴上是否存在一点R,使以A、B、R为顶点的三角形是直角三角形.若存在,请直接写出R点的坐标;若不存在,说明理由.
【答案】(1) 当x=40时,y最大值=2400 ;(2);(3)见解析.
【解析】分析:(1)设PQ=x,利用相似三角形的性质可得出QN=﹣x+120,根据矩形的面积公式即可得出y=﹣x2+120x,配方后即可找出面积的最大值;
(2)①依照题意画出图形,由AD的长度可得出点A的坐标,根据点A、B的坐标,利用待定系数法即可求出抛物线的解析式;
②设点R的坐标为(0,n),则AB=80,AR=,BR=,分∠ABR=90°、∠ARB=90°和∠BAR=90°三种情况考虑,利用勾股定理即可得出关于n的一元一次(或一元二次)方程,解之即可得出结论.
详解:(1)∵PQ⊥BC,MN⊥BC,AD⊥BC,∴PQ∥AD,MN∥AD,∴△BPQ∽△BAD,△CAD∽△CMN,∴BQ=BD,CN=CD.
设PQ=x,则QN=BC﹣BQ﹣CN=120﹣(BD+CD)=﹣x+120,
∴y=PQQN=x(﹣x+120)=﹣x2+120x=﹣(x﹣40)2+2400,
∴当x=40时,y取最大值2400,∴宽为40mm时,其面积最大.最大面积是2400mm2.
(2)①依照题意画出图形,如图所示.
设抛物线的解析式为y=ax2+c,将B(﹣60,0)、A(20,80)代入y=ax2+c,,解得:,∴过A、B、C三点的抛物线解析式为y=﹣x2+90.
②假设存在,设点R的坐标为(0,n),则AB=80,AR=,BR=.
分三种情况考虑:
①当∠ABR=90°时,有AR2=AB2+BR2,即400+(80﹣n)2=12800+3600+n2,解得:n=﹣60,此时点R的坐标为(0,﹣60);
②当∠ARB=90°时,有AB2=AR2+BR2,即12800=400+(80﹣n)2+3600+n2,整理得:n2﹣80n﹣1200=0,解得:n1=,n2=,此时点R的坐标为(0,)或(0,);
③当∠BAR=90°时,有BR2=AB2+AR2,即3600+n2=12800+400+(80﹣n)2,解得:n=100,此时点R的坐标为(0,100).
综上所述:在此抛物线对称轴上存在一点R,使以A、B、R为顶点的三角形是直角三角形,点R的坐标为(0,﹣60)或(0,)或(0,)或(0,100).
科目:初中数学 来源: 题型:
【题目】如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1的周长和为______.(n≥2,且n为整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA⊥OB,引射线OC(点C在∠AOB外),若∠BOC=α(0°<α<90°),OD平分∠BOC,OE平分∠AOD.
(1)若α=40°,求∠BOE的度数;
(2)请根据∠BOC=α,请依题意补全图形,求出∠BOE的度数(用含α的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CA⊥AB,垂足为 A,AB=24,AC=12,射线 BM⊥AB,垂足为 B, 一动点 E 从 A点出发以 3 厘米/秒沿射线 AN 运动,点 D 为射线 BM 上一动点, 随着 E 点运动而运动,且始终保持 ED=CB,当点 E 经过______秒时,△DEB 与△BCA 全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=CB,∠BAC=∠BCA,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌ Rt△CBF;
(2)求证:AE⊥CF;
(3)若∠CAE=30°,求∠ACF度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,一次函数的图象与直线平行,且经过点A(1,6).
(1)求一次函数的解析式;
(2)求一次函数的图象与坐标轴围成的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设=k,下列结论:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)当k=1时,△ABE∽△ADF,其中结论正确的是( )
A.(1)(2)(3) B.(1)(3) C.(1)(2) D.(2)(3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com