精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=CB,∠BAC=BCA,∠ABC=90°FAB延长线上一点,点EBC上,且AE=CF.

(1)求证:RtABE RtCBF

(2)求证:AECF

(3)若∠CAE=30°,求∠ACF度数.

【答案】(1)见解析;(2)见解析;(3)∠ACF=60°

【解析】

(1)RtABERtCBF中,由于AB=CBAE=CF,利用HL可证RtABERtCBF;

(2)延长AECFD,根据三角形的内角和得∠CDE=ABC=90°;

(3)AB=CB,∠ABC=90°,即可求得∠CAB与∠ACB的度数,即可得∠BAE的度数,又由RtABERtCBF,即可求得∠BCF的度数,则由∠ACF=BCF+ACB即可求得答案.

1)证明:

∵∠ABC=90°

∴∠ABE=CBF=90°

ABECBF直角三角形

AB=BCAE=CF

RtABERtCBF(HL)

2)延长AECFD

∵△ABE≌△CBF

∴∠BAE=BCF

∵∠AEB=CED

∴∠BAE+AEB=90°

∴∠DCE+CED=90°

∴∠CDE=90°

AECF.

3)∵AB=CB,∠ABC=90°,∠CAE=30°,∠CAB=CAE+EAB

∴∠BCA=BAC=45°

∴∠EAB=15°

RtABERtCBF

∴∠EAB=FCB

∴∠FCB=15°

∴∠ACF=FCB+BCA=15°+45°=60°

即∠ACF=60°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知反比例函数的图象经过点A13).

1)试确定此反比例函数的解析式;

2)当=2, y的值;

3)当自变量5增大到8时,函数值y是怎样变化的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)已知代数式(ax3)(2x4)x2b化简后,不含x2项和常数项.

(1)ab的值;

(2)(2ab)2(a2b)(a2b)3a(ab)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,,结论:①;②;③;④,其中正确的是有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+ca≠0)的图象如图所示,下列由5个结论:①abc0ba+c4a+2b+c02c3ba+bmam+b)(m≠1).其中正确的结论有_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在550之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,(即出厂价=基础价+浮动价其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长x成正比例,在营销过程中得到了表格中的数据,已知出厂一张边长为40cm的薄板,获得利润是26.(利润=出厂价-成本价)

薄板的边长(cm

20

30

出厂价(元/张)

50

70

(1)求一张薄板的出厂价y与边长x之间满足的函数关系式;

(2)求一张薄板的利润p与边长x之间的函数关系式;

(3)若一张薄板的利润是34元,且成本最低,此时薄板的边长为多少?当薄板的边长为多少时,所获利润最大,求出这个最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为___________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了落实党中央提出的惠民政策,我市今年计划开发建设AB两种户型的廉租房40套.投入资金不低于270万元,又不超过296万元.开发建设办公室预算:一套A廉租房的造价为10万元,一套B廉租房的造价为4.8万元.

1)请问有几种开发建设方案?

2 在投入资金最少的方案下,为了让更多的人享受到惠民政策,开发建设办公室决定通过缩小廉租房的面积来降低造价、节省资金.每套A户型廉租房的造价降低1万元,每套B户型廉租房的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的廉租房,如果同时建设AB两种户型,请你直接写出再次开发建设的方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高校共有5个大餐厅和2个小餐厅。经过测试:同时开放1个大餐厅和2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅和1个小餐厅,可供2280名学生就餐。

(1)1个大餐厅和1个小餐厅分别可供多少名学生就餐?

(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由

查看答案和解析>>

同步练习册答案