【题目】如图,在矩形ABCD中,AD=4,将∠A向内翻析,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=_____.
【答案】
【解析】
依据△A1DB1≌△A1DC(AAS),即可得出A1C=A1B1,再根据折叠的性质,即可得到A1C=BC=2,最后依据勾股定理进行计算,即可得到CD的长,即AB的长.
解:由折叠可得,A1D=AD=4,∠A=∠EA1D=90°,∠BA1E=∠B1A1E,BA1=B1A1,∠B=∠A1B1E=90°,
∴∠EA1B1+∠DA1B1=90°=∠BA1E+∠CA1D,
∴∠DA1B1=∠CA1D,
又∵∠C=∠A1B1D,A1D=A1D,
∴△A1DB1≌△A1DC(AAS),
∴A1C=A1B1,
∴BA1=A1C=BC=2,
∴Rt△A1CD中,CD==,
∴AB=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).
(1)求这个二次函数的表达式;
(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC面积最大时,求点P的坐标和△APC的面积最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王计划批发“山东大樱桃”和“泰国榴莲”两个品种的水果共120斤,樱桃和榴莲的批发价分别为32元/斤和40元/斤.设购买了樱桃x斤.
(1)若小王批发这两种水果正好花费了4400元,那么小王分别购买了多少斤樱桃和榴莲?填写下表,并列方程求解;
品种 | 批发价(元) | 购买斤数 | 小王应付的钱数(元) |
樱桃 | 32 | x | |
榴莲 | 40 |
(2)设小王购买两种水果的总花费为y元,试写出y与x之间的函数表达式.
(3)若要求所批发的榴莲的斤数不少于樱桃斤数的2倍,那么购买樱桃的数量为多少时,可使小王的总花费最少?这个最少花费是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按八折收费;在乙商场累计购物超过50元后,超出50元的部分按九折收费.设顾客累计购物(单位:元),购物花费为(单位:元).
(1)分别写出在甲、乙两个商场购物时,关于的函数解析式;
(2)顾客到哪家商场购物花费少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.
(1)求证:CD是⊙O的切线;
(2)若AD=8,=,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲楼AB高20米,乙楼CD高10米,两栋楼之间的水平距离BD=30m,为了测量某电视塔EF的高度,小明在甲楼楼顶A处观测电视塔塔顶E,测得仰角为37°,小明在乙楼楼顶C处观测电视塔塔顶E,测得仰角为45°,求该电视塔的高度EF.
(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知,当Q为BF中点时,.
(1)判断DE与BF的位置关系,并说明理由;
(2)求DE,BF的长;
(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系;②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).学校对七年级部分学生进行选课调查,得到如图所示的统计图.
(1)根据统计图,本次选课共调查了 名学生;
(2)若该校七年级有960名学生,请计算出选“神奇魔方”的人数;
(3)学校将选“神奇魔方”的学生分成人数相等的A、B、C三个班,小聪、小慧都选择了“神奇魔方”.已知小聪不在A班,用列表法或画树状图法,求小聪和小慧被分到同一个班的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com