【题目】如图,在平面直角坐标系中,一次函数
的图象与
轴交于点
,与
轴交于点
,且与正比例函数
的图象交于点
.
(1)求一次函数
的解析式;
(2)点
在
轴上,当
最小时,求出点
的坐标;
(3)若点
是直线
上一点,点
是平面内一点,以
、
、
、
四点为顶点的四边形是矩形,请直接写出点
的坐标.
【答案】(1)
;(2)
;(3)
或(
,
).
【解析】
(1)由A、C坐标,利用待定系数法可求得答案;
(2)由一次函数解析式可求得B点坐标,可求得B点关于x轴的对称点B′的坐标,连接B′C与x轴的交点即为所求的P点,由B′、C坐标可求得直线B′C的解析式,则可求得P点坐标;
(3)分两种情形分别讨论:①当OC为边时,四边形OCFE是矩形,此时EO⊥OC;②当OC为对角线时,四边形OE′CF′是矩形,此时OE′⊥AC;分别求出E和E’的坐标,然后根据矩形的性质和坐标间的位置关系即可得到点
的坐标.
解:(1)∵一次函数y=mx+n(m≠0)的图象经过点A(3,0),点C(3,6),
∴
,解得
,
∴一次函数的解析式为y=x+3;
(2)如图,作点B关于x轴的对称点B′,连接CB′交x轴于P,此时PB+PC的值最小.
![]()
∵B(0,3),C(3,6)
∴B′(0,-3),
设直线CB′的解析式为y=kx+b(k≠0),
则
,解得:
,
∴直线CB′的解析式为y=3x3,
令y=0,得x=1,
∴P(1,0);
(3)如图,
![]()
①当OC为边时,四边形OCFE是矩形,此时EO⊥OC,
∵直线OC的解析式为y=2x,
∴直线OE的解析式为y=
x,
联立
,解得
,
∴E(2,1),
∵EO=CF,OE∥CF,
根据坐标之间的位置关系易得:F(1,7);
②当OC为对角线时,四边形OE′CF′是矩形,此时OE′⊥AC,
∴直线OE′的解析式为y=x,
由
,解得
,
∴E′(
,
),
∵OE′=CF′,OE′∥CF′,
根据坐标之间的位置关系易得:F′(
,
),
综上所述,满足条件的点F的坐标为(1,7)或(
,
).
科目:初中数学 来源: 题型:
【题目】如图,已知:∠BAC的平分线与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是( )
![]()
A. 15尺B. 16尺C. 17尺D. 18尺
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=10,∠B=30°,O是线段AB上的一个动点,以O为圆心,OB为半径作⊙O交BC于点D,过点D作直线AC的垂线,垂足为E.
(1)求证:DE是⊙O的切线;
(2)设OB=x,求∠ODE的内部与△ABC重合部分的面积y的最大值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(11·漳州)(满分8分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:
![]()
(1)请将以上两幅统计图补充完整;
(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;
(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.
(1)求每套队服和每个足球的价格是多少?
(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;
(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+4与x轴交于A(
,0)、B两点,与y轴交于C点,其对称轴为直线x=1.
(1)直接写出抛物线的解析式 :
(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;
(3)除(2)中的点A′、C′外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形,若存在,求出E、F的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=
x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为
,则a、b的值分别为( )
![]()
A.
,
B.
,﹣
C.
,﹣
D. ﹣
,![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com