【题目】如图,边长为a的正方形ABCD被两条与边平行的线段EF、GH分割成四个小矩形,EF与GH交于点P,连接AF、AH、FH.
(1)如图1,若a=1,AE=AG=,求FH的值;
(2)如图2,若∠FAH=45°,证明:AG+AE=FH;
(3)若Rt△GBF的周长l=a,求矩形EPHD的面积S与l的关系(只写结果,不写过程).
【答案】(1);(2)详见解析;(3)S=.
【解析】
(1)由正方形的性质和矩形的性质可求CF=CH=,由勾股定理可求解;
(2)将△ADH绕点A顺时针旋转90°后,可得△AFH≌△AFM然后可求得结论;
(3)设BF=x,GB=y,根据线段之间的关系利用勾股定理求出xy的值,即可求矩形EPHD的面积S与l的关系.
解:(1)∵AE=AG=,AB=AD=1,
∴DE=GB=,
∵BC∥GH,BG∥CH,
∴CH=GB=,
∵DE∥CF,EF∥CD,
∴CF=DE=,
∴FH=;
(2)如图2,将△ADH绕点A顺时针旋转90°到△ABM的位置.
∵四边形ABCD是正方形,∠FAH=45°,
∴∠BAF+∠HAD=45°,
∴根据旋转的性质知,∠MAB=∠BAF,
∴∠MAF=∠FAH,
在△AMF与△AHF中,
,
∴△AMF≌△AHF(SAS).
∴MF=HF.
∵MF=MB+BF=HD+BF=AG+AE,
∴AG+AE=FH;
(3)设BF=x,GB=y,则FC=a﹣x,AG=a﹣y,(0<x<a,0<y<a)
在Rt△GBF中,GF2=BF2+BG2=x2+y2
∵Rt△GBF的周长为a,
∴,
即
即
整理得,
∴矩形EPHD的面积.
科目:初中数学 来源: 题型:
【题目】如图所示是某路灯灯架示意图,其中点A表示电灯,AB和BC为灯架,l表示地面,已知AB=2m,BC=5.7m,∠ABC=110°,BC⊥l于点C,求电灯A与地面l的距离.(结果精确到0.1m.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据研究,人体内血乳酸浓度升高是运动后感觉疲劳的重要原因,运动员未运动时,体内血乳酸浓度水平通常在40mg/L以下;如果血乳酸浓度降到50mg/L以下,运动员就基本消除了疲劳,体育科研工作者根据实验数据,绘制了一副图象,它反映了运动员进行高强度运动后,体内血乳酸浓度随时间变化而变化的函数关系.
下列叙述正确的是
A. 运动后40min时,采用慢跑活动方式放松时的血乳酸浓度与采用静坐方式休息时的血乳酸浓度相同
B. 运动员高强度运动后最高血乳酸浓度大约为350mg/L
C. 运动员进行完剧烈运动,为了更快达到消除疲劳的效果,应该采用慢跑活动方式来放松
D. 采用慢跑活动方式放松时,运动员必须慢跑80min后才能基本消除疲劳
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.
(1)请根据题意补全图1;
(2)猜测BD和CE的数量关系并证明;
(3)作射线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD=1时,补全图形,直接写出PB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温(℃)与开机后用时()成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温(℃)与时间()的关系如图所示:
(1)分别写出水温上升和下降阶段与之间的函数关系式;
(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图像交于点A(-1,6)、B(a,-2).
(1)求一次函数与反比例函数的解析式;
(2)根据图像直接写出y1>y2时,x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com