分析 根据三角形中位线定理可知EF=$\frac{1}{2}$DN,求出DN的最大值即可
解答
解:如图,连结DN,
∵DE=EM,FN=FM,
∴EF=$\frac{1}{2}$DN,
当点N与点B重合时,DN的值最大即EF最大,
在Rt△ABD中,
∵∠A=90°,AD=2,AB=2$\sqrt{5}$,
∴BD=$\sqrt{A{D}^{2}+A{B}^{2}}$=2$\sqrt{6}$,
∴EF的最大值=$\frac{1}{2}$BD=$\sqrt{6}$.
故答案为:$\sqrt{6}$.
点评 本题考查三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (2,3) | B. | (2,-3) | C. | (-2,3) | D. | (-2,-3) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 36 | B. | 72 | C. | 144 | D. | 156 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com