【题目】已知:在△ABC中,AB=AC,点D是AB上一点,以BD为直径的⊙0与AC边相切于点E,交BC于点F,FG⊥AC于点G.
(1)如图l,求证:GE=GF;
(2)如图2,连接DE,∠GFC=2∠AED,求证:△ABC为等边三角形;
(3)如图3,在(2)的条件下,点H、K、P分别在AB、BC、AC上,AK、BP分别交CH于点M、N,AH=BK,∠PNC﹣∠BAK=60°,CN=6,CM=4,求BC的长.
【答案】(1)见解析;(2)见解析;(3)BC=10.
【解析】
(1)由切线的定义得到直角条件,由半径相等可证OFGE为正方形;
(2)由圆周角定理可得直角条件,由2倍角关系可得60°条件,从而证明等边三角形;
(3)结合(2)的结论和条件中角的关系,需要设置角参数,标识图形从而发现BC=BR,用勾股定理建立方程关系,求解方程即可.
解:(1)如图1,连接OE和OF
∵AC是⊙O的切线
∴OE⊥AC,
∴∠OEG=90°
∵FG⊥AC,
∴∠FGE=90°
∵AB=AC,
∴∠ABC=∠ACB
∵OB=OF,
∴∠OBF=∠OFB
∴∠OFB=∠ACB,
∴OF∥AC
∴∠OFG+∠FGE=180°,
∴∠OFG=90°
∴∠OFG=∠FGE=∠OEG=90°
∴四边形OFGE为矩形
∵OF=OE,
∴四边形OFGE为正方形
∴GE=GF
(2)如图2,连接OE,BE
∵BD是⊙O的直径,
∴∠BED=90°
∴∠OED+∠OEB=90°
∵∠OEG=90°,
∴∠AED+∠OED=90°
∵∠OEG=90°,
∴∠AED+∠OED=90°
∴∠OEB=∠AED
∵OB=OE,
∴∠OBE=∠OEB
∴∠OBE=∠AED
∴∠AOE=2∠OEB=2∠AED
∵∠GFC=2∠AED
∴∠AOE=∠GFC
∵∠C+∠GFC=90°,∠A+∠AOE=90°
∴∠C=∠A
∴BA=BC,
∵AB=AC
∴AB=AC=BC
∴△ABC为等边三角形
(3)∵△ABC为等边三角形
∴∠CAH=∠ABK=60°
∵AH=BK,AC=AB,
∴△CAH≌△ABK(SAS)
∴∠ACH=∠BAK
∵∠KMC=∠KAC+∠ACM
∴∠KMC=∠KAC+∠BAK=60°
过点C作CQ⊥AK,垂足为Q,过点B作BT⊥CH,垂足为T
∴∠AQC=∠CTB=90°
∵∠QAC=∠BAC﹣∠BAK=60°,∠TCB=∠ACB﹣∠ACH=60°﹣∠ACH
∴∠QAC=∠TCB,
∵AC=BC
∴△AQC≌△CTB(AAS)
∴QC=BT
在Rt△MQC中,
∵CM=4,∠QMC=60°,sin∠QMC=
∴QC=6
设∠BAK=2α=∠ACH
∵∠PNC﹣∠BAK=60°,
∴∠PNC=60°+α=∠BNH
∴∠BCH=∠ACB﹣∠ACH=60°﹣2α
延长NH到点R,使RT=TN,连接BR
∴BT使RN的垂直平分线
∴BR=BN
∴∠BNR=∠BRN=60°+α
∴∠CBR=180°﹣∠BCR﹣∠CRB=60°+α
∴∠CBR=∠CRB=60°+α
∴BC=RC
设TN=RT=a,
∵CN=6
∴CT=a+6,CR=CB=2a+6
∵CQ=BT=6
在Rt△BTC中
BT2+TC2=BC2
∴62+(a+6)2=(2a+6)2
∴a1=﹣6(舍),a2=2
∴TN=2
∴BC=10
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F。
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”。你同意他的看法吗?请充分说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AE与BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是( )
A. AE、BF是△ABC的内角平分线
B. CG也是△ABC的一条内角平分线
C. AO=BO=CO
D. 点O到△ABC三边的距离相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=kx+b的图象经过(﹣4,﹣2),(1,8)两点.
(1)求该一次函数的表达式;
(2)如图,该一次函数的图象与反比例函数y=的图象相交于点A,B,与y轴交于点C,且AB=BC,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是BC上一点,连接AE,点F是AE上一点,连接FC,若∠BAE=∠EFC,CF=CD,AB:BC=3:2,AF=4,则FC的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,O是CD的中点,延长AO交BC的延长线于点E,且BC=CE.
(1)求证:△AOD≌△EOC;
(2)若∠BAE=90°,AB=6,OE=4,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.
类型 价格 | A型 | B型 |
进价(元/盏) | 40 | 65 |
标价(元/盏) | 60 | 100 |
(1)这两种台灯各购进多少盏?
(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )
A. 袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B. 掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C. 先后两次掷一枚质地均匀的硬币,两次都出现反面
D. 先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com