设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
d、a、r之间关系 | 公共点的个数 |
d>a+r | |
d=a+r | |
a﹣r<d<a+r | |
d=a﹣r | |
d<a﹣r |
所以,当r<a时,⊙O与正方形的公共点的个数可能有 个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
d、a、r之间关系 | 公共点的个数 |
d>a+r | |
d=a+r | |
a≤d<a+r | |
d<a |
所以,当r=a时,⊙O与正方形的公共点个数可能有 个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=a.
【考点】直线与圆的位置关系.
【专题】计算题;压轴题.
【分析】(1)当r<a时,⊙A的直径小于正方形的边长,⊙A与正方形中垂直于直线l的一边相离、相切、相交,三种情况,故可确定⊙O与正方形的交点个数;
(2)当r=a时,⊙O的直径等于正方形的边长,此时会出现⊙A与正方形相离,与正方形一边相切,相交,与正方形四边相切,四种情况,故可确定⊙O与正方形的交点个数;
(3)如图③,当⊙O与正方形有5个公共点时,连接OC,用a、r表示△COF的各边长,在Rt△OCF中,由勾股定理求a、r的关系.
【解答】
解:(1)如图①
d、a、r之间关系 | 公共点的个数 |
d>a+r | 0 |
d=a+r | 1 |
a﹣r<d<a+r | 2 |
d=a﹣r | 1 |
d<a﹣r | 0 |
所以,当r<a时,⊙O与正方形的公共点的个数可能有0、1、2个;
(2)如图②
d、a、r之间关系 | 公共点的个数 |
d>a+r | 0 |
d=a+r | 1 |
a≤d<a+r | 2 |
d<a | 4 |
所以,当r=a时,⊙O与正方形的公共点个数可能有0、1、2、4个;
(3)如图③所示,连接OC.
则OE=OC=r,OF=EF﹣OE=2a﹣r.
在Rt△OCF中,由勾股定理得:
OF2+FC2=OC2
即(2a﹣r)2+a2=r2,
4a2﹣4ar+r2+a2=r2,
5a2=4ar,
5a=4r;
(4)①当a<r<时,⊙O与正方形的公共点个数可能有0、1、2、4、6、7、8个;
②当r=a时,⊙O与正方形的公共点个数可能有0、1、2、5、8个;
③当时,⊙O与正方形的公共点个数可能有0、1、2、3、4、6、8个;
④当时,⊙O与正方形的公共点个数可能有0、1、2、3、4个;
⑤当时,⊙O与正方形的公共点个数可能有0、1、2、3、4个.
【点评】本题考查了直线与圆的位置关系.关键是根据直线与圆的三种位置关系,r与a的大小关系,分类讨论.
科目:初中数学 来源: 题型:
如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.
(1)求抛物线解析式;
(2)如图2,当点F恰好在抛物线上时,求线段OD的长;
(3)在(2)的条件下:
①连接DF,求tan∠FDE的值;
②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,直线交x轴于A点,交y轴于B点,点C是线段AB的中点,连接OC,然后将直线OC绕点C逆时针旋转30°交x轴于点D,再过D点作直线DC1∥OC,交AB与点C1,然后过C1点继续作直线D1C1∥OC,交x轴于点D1,并不断重复以上步骤,记△OCD的面积为S1,△DC1D1的面积为S2,依此类推,后面的三角形面积分别是S3,S4…,那么S1= ,若S=S1+S2+S3+…+Sn,当n无限大时,S的值无限接近于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com