精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长  


π

【考点】弧长的计算;圆内接四边形的性质.

【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.

【解答】解:连接OA、OC,

∵∠B=135°,

∴∠D=180°﹣135°=45°,

∴∠AOC=90°,

的长==π.

故答案为:π.

【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式L=

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


二次函数y=ax2﹣2ax+3的图象与x轴有两个交点,其中一个交点坐标为(﹣1,0),则一元二次方程ax2﹣2ax+3=0的解为 

查看答案和解析>>

科目:初中数学 来源: 题型:


在劳技课上,老师请同学们在一张长为9cm,宽为8cm的长方形纸板上,剪下一个腰长为5cm的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边长上).请你帮助同学们画出图形并计算出剪下的等腰三角形的面积.(求出所有可能的情况)

查看答案和解析>>

科目:初中数学 来源: 题型:


某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是(  )

A.(3+x)(4﹣0.5x)=15       B.(x+3)(4+0.5x)=15  C.(x+4)(3﹣0.5x)=15       D.(x+1)(4﹣0.5x)=15

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.

(1)求证:BE=CE;

(2)试判断四边形BFCD的形状,并说明理由;

(3)若BC=8,AD=10,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,△ABC中,∠B=90°,BC=2AB,则cosA=  

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为(  )

A.2.3    B.2.4    C.2.5    D.2.6

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=  

查看答案和解析>>

科目:初中数学 来源: 题型:


设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.

(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:

d、a、r之间关系

公共点的个数

d>a+r

d=a+r

a﹣r<d<a+r

d=a﹣r

d<a﹣r

所以,当r<a时,⊙O与正方形的公共点的个数可能有   个;

(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:

d、a、r之间关系

公共点的个数

d>a+r

d=a+r

a≤d<a+r

d<a

所以,当r=a时,⊙O与正方形的公共点个数可能有   个;

(3)如图③,当⊙O与正方形有5个公共点时,试说明r=a.

查看答案和解析>>

同步练习册答案