精英家教网 > 初中数学 > 题目详情
2.混合运算:
(1)(1-$\sqrt{3}$)-1+(π-3.14)0-$\sqrt{(\sqrt{3}-2)^{2}}$; 
(2)($\sqrt{3}$-1)2+$\frac{2}{1-\sqrt{3}}$+(-$\frac{\sqrt{3}}{3}$)-1

分析 (1)先算负整数指数幂,0次幂,化简二次根式,再进一步合并即可;
(2)先算负整数指数幂,乘方,化简二次根式,再进一步合并即可.

解答 解:(1)原式=-$\frac{1+\sqrt{3}}{2}$+1-(2-$\sqrt{3}$)
=-$\frac{3}{2}$+$\frac{\sqrt{3}}{2}$;
(2)原式=4-2$\sqrt{3}$-($\sqrt{3}$+1)-$\sqrt{3}$
=3-4$\sqrt{3}$.

点评 此题考查二次根式的混合运算,掌握运算顺序与化简的方法是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.将△ABC绕点A旋转一定角度后与△ADE重合,如果△ABC的面积是12cm2,那么△ADE的面积是12cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E,则线段BC与DC相等吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知一元二次方程mx2+n=0(m≠0),若方程有解,则必须(  )
A.n=0B.mn同号C.n是m的整数倍D.mn异号

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知在Rt△ABC中,∠C=90°,若a+b=12cm,c=10cm,则Rt△ABC的面积是(  )
A.48cm2B.24cm2C.16cm2D.11cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.问题提出;怎样计算1×2+2×3+3×4+…+(n-1)×n呢?
(1)材料学习;计算1+2+3…+n
因为1=$\frac{1}{2}$(1×2-0×1);2=$\frac{1}{2}$(2×3-1×2);3=$\frac{1}{2}$(3×4-2×3)
…,n=$\frac{1}{2}$[n(n+1)-(n-1)n]
所以1+2+3+…+n
=$\frac{1}{2}$(1×2-0×1)+$\frac{1}{2}$(2×3-1×2)+$\frac{1}{2}$(3×4-2×3)+…+$\frac{1}{2}$[n(n+1)-(n-1)n]
=$\frac{1}{2}$[1×2-0×1+2×3-1×2+3×4-2×3+…+n(n+1)-(n-1)n]=$\frac{1}{2}$n(n+1)
(2)探究应用
观察规律:①1×2=$\frac{1}{3}$(1×2×3-0×12);②2×3=$\frac{1}{3}$(2×3×4-1×2×3);
③3×4=$\frac{1}{3}$(3×4×5-2×3×4);…
猜想归纳:
根据(2)中观察的规律直接写出:4×5=$\frac{1}{3}$(4×5×6-3×4×5)
(n-1)×n=$\frac{1}{3}$[(n-1)n(n+1)-(n-2)(n-1)n]
问题解决:
1×2+2×3+3×4+4×5…+(n-1)×n
=$\frac{1}{3}$(1×2×3-0×1×2)+$\frac{1}{3}$(2×3×4-1×2×3)+$\frac{1}{3}$(3×4×5-2×3×4)+…+$\frac{1}{3}$[(n-1)n(n+1)-(n-2)(n-1)n]
=$\frac{1}{3}$[1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4+…+(n-1)n(n+1)-(n-2)(n-1)n]=$\frac{1}{3}$(n-1)n(n+1)
(3)拓展延伸
根据(1)、(2)中的规律,请直接写出1×2×3+2×3×4+3×4×5+…+(n-2)(n-1)n=$\frac{1}{4}$(n-2)(n-1)n(n+1).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为A(12,0),C(0,4),点D为OA边的中点,连接BD.
(1)直接写出:点D的坐标:(6,0);tan∠BDA=$\frac{2}{3}$;
(2)试判定以A点为圆心,以3为半径的⊙A与直线BD有多少个公共点?
(3)如图2,若点M从点D出发,以每秒1个单位长度的速度沿D→A→B运动,同时点N从点O出发,以每秒3个单位长度的速度沿O→C→B→A运动,当点M,N相遇时运动即停止,设运动时间为t(秒),求使得△MON为直角三角形时所有t值和取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.计算:$\frac{1}{2}$$\sqrt{20}$-$\frac{5}{4}$$\sqrt{\frac{1}{5}}$=$\frac{3\sqrt{5}}{4}$.$\frac{\sqrt{12}+\sqrt{27}}{\sqrt{3}}$=5.

查看答案和解析>>

同步练习册答案