【题目】如图,菱形ABCD的边长为4,∠B=120°.点P是对角线AC上一点(不与端点A重合),则线段AP+PD的最小值为_____.
【答案】2
【解析】
作PE⊥AB于点E,DF⊥AB于点F,由菱形的性质可得∠DAC=∠CAB,AB=BC,由等腰三角形的性质和直角三角形的性质可得PE=AP,AF=AD=2,DF=AF=2,可得AP+PD=PE+DP,则点D,点P,点E三点共线且垂直AB时,PE+DP的值最小,即可求线段AP+PD的最小值.
解:如图,作PE⊥AB于点E,DF⊥AB于点F,
∵四边形ABCD是菱形
∴∠DAC=∠CAB,AB=BC,且∠B=120°
∴∠CAB=30°
∴PE=AP,∠DAF=60°
∴∠FDA=30°,且DF⊥AB
∴AF=AD=2,DF=AF=2
∵AP+PD=PE+DP
∴当点D,点P,点E三点共线且垂直AB时,PE+DP的值最小,最小值为DF,
∴线段AP+PD的最小值为2
故答案为:2
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,将沿弦BC所在直线折叠,折叠后的弧与直径AB相交于点D,连接CD.
(1)若点D恰好与点O重合,则∠ABC= °;
(2)延长CD交⊙O于点M,连接BM.猜想∠ABC与∠ABM的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求证:AE是⊙O的切线;
(2) 连接OC,当BC=3时,求劣弧AC的长和扇形B0C的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙M经过O点,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长是方程的两根.
(1)求线段OA、OB的长;
(2)若点C在劣弧OA上,连结BC交OA于D,当OC2=CD·CB时,求点C的坐标;
(3)若点C在优弧OA上,作直线BC交x轴于D,是否存在△COB和△CDO相似,若存在,求出点C的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一元二次方程中,有著名的韦达定理:对于一元二次方程ax2+bx+c=0(a≠0),如果方程有两个实数根x1,x2,那么x1+x2=﹣,x1x2=(说明:定理成立的条件△≥0).比如方程2x2﹣3x﹣1=0中,△=17,所以该方程有两个不等的实数解.记方程的两根为x1,x2,那么x1+x2=,x1x2=﹣,请根据阅读材料解答下列各题:
(1)已知方程x2﹣3x﹣2=0的两根为x1、x2,且x1>x2,求下列各式的值:
①x12+x22;②;
(2)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根.
①是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,请说明理由.
②求使的值为整数的实数k的整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场在促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两个抽奖方案:
方案一:转动转盘A一次,转出红色可领取一份奖品;
方案二:转动转盘B两次,两次都转出红色可领取一份奖品.(两个转盘都被平均分成3份)如果你获得一次抽奖机会,你会选择哪个方案?请用相关的数学知识说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com