16£®ÏÈÔĶÁÏÂÁвÄÁÏ£¬ÔÙ½â´ðºóÃæµÄÎÊÌ⣮
Çó1+2+22+23+24+¡­+2100µÄºÍ£®
½â£ºÉèS=1+2+22+23+24+¡­+2100£®¢Ù
½«¢ÙʽÁ½±ßͬʱ³ËÒÔ2£¬µÃ£º
2S=2+22+23+24+25+¡­+2101£®¡¡¡¡ ¢Ú
¢Ú-¢Ù£¬µÃ
2S-S=2101-1£®
¼´           S=2101-1
ËùÒÔ1+2+22+23+24+¡­+2100=2101-1
ÎÊÌâ½â´ð£º
£¨1£©²ÂÏë1+2+22+23+¡­+22016µÄºÍ£¬²¢Ð´³ö¼ÆËã¹ý³Ì£»
£¨2£©Çó1+32+34+36+38+¡­+32nµÄºÍ£¨ÆäÖÐnΪÕýÕûÊý£©£»
£¨3£©¼ÇSn=1+32+34+36+38+¡­+32n£¨ÆäÖÐnΪÕýÕûÊý£©£¬ÊÔ˵Ã÷£º$\sqrt{\frac{8{S}_{2n}+1}{9}}$=$\frac{8{S}_{n}+1}{9}$£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÒÔÇóµÃÌâÄ¿ÖÐËùÇóʽ×ÓµÄÖµ£»
£¨2£©¸ù¾ÝÌâÄ¿ÖеÄÐÅÏ¢£¬¶ÔËùÇóʽ×Ó±äÐμ´¿É½â´ð±¾Ì⣻
£¨3£©¸ù¾Ý£¨2£©ÖеĽá¹û·Ö±ð»¯¼òËùÒªÖ¤Ã÷µÄʽ×Ó¼´¿É½â´ð±¾Ì⣮

½â´ð ½â£º£¨1£©1+2+22+23+24+¡­+22016=22017-1£®
ÉèS=1+2+22+23+24+¡­+22016¢Ù
½«¢ÙʽÁ½±ßͬʱ³ËÒÔ2£¬µÃ£º
2S=2+22+23+24+25+¡­+22017¢Ú
¢Ú-¢Ù£¬µÃ2S-S=22017-1£®¼´ S=22017-1£¬
ËùÒÔ1+2+22+23+24+¡­+22016=22017-1£»

£¨2£©ÉèS=1+32+34+36+38+¡­+32n¢Ù
½«¢ÙʽÁ½±ßͬʱ³ËÒÔ32£¬µÃ£º9S=32+34+36+38+¡­+32n+2¢Ú
¢Ú-¢Ù£¬µÃ9S-S=32n+2-1£®¼´S=$\frac{{3}^{2n+2}-1}{8}$£»
£¨3£©ÓÉ£¨2£©¿ÉµÃ£¬Sn=$\frac{{3}^{2n+2}-1}{8}$£¬S2n=$\frac{{3}^{4n+2}-1}{8}$£¬
¡à$\sqrt{\frac{8{S}_{2n}+1}{9}}=\sqrt{\frac{8¡Á\frac{{3}^{4n+2}-1}{8}+1}{9}}$=$\sqrt{\frac{{3}^{4n+2}}{9}}$=$\frac{{3}^{2n+1}}{3}$£¬
$\frac{8{S}_{n}+1}{9}=\frac{8¡Á\frac{{3}^{2n+2}-1}{8}+1}{9}=\frac{{3}^{2n+2}}{9}$=$\frac{{3}^{2n+1}}{3}$£¬
¡à$\sqrt{\frac{8{S}_{2n}+1}{9}}$=$\frac{8{S}_{n}+1}{9}$£®

µãÆÀ ±¾Ì⿼²éʵÊýµÄÔËË㣬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öÊý×ֵı仯Ìص㣬Ã÷ȷʵÊýÔËËãµÄ·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÒ»µÈÑüÈý½ÇÐεÄÖܳ¤Îª12$\sqrt{5}$£¬ÆäÖÐÒ»±ßµÄ³¤Îª2$\sqrt{5}$£¬ÔòÕâ¸öµÈÑüÈý½ÇÐεÄÑü³¤Îª5$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®½ñÄêijÍøÉϹºÎïÉ̳ÇÔÚ¡°Ë«11¹ºÎï½Ú¡±ÆÚ¼ä¸ã´ÙÏú»î¶¯£¬»î¶¯¹æÔòÈçÏ£º
¢Ù¹ºÎï²»³¬¹ý100Ôª²»¸øÓŻݣ»
¢Ú¹ºÎﳬ¹ý100Ôªµ«²»×ã500ÔªµÄ£¬È«²¿´ò9ÕÛ£»
¢Û¹ºÎﳬ¹ý500ÔªµÄ£¬ÆäÖÐ500Ôª²¿·Ö´ò9ÕÛ£¬³¬¹ý500Ôª²¿·Ö´ò8ÕÛ£®
£¨1£©Ð¡ÀöµÚ1´Î¹ºµÃÉÌÆ·µÄ±ê¼ÛΪ200Ôª£¬°´»î¶¯¹æ¶¨Êµ¼Ê¸¶¿î180Ôª£®
£¨2£©Ð¡ÀöµÚ 2´Î¹ºÎïʵ¼Ê»¨·ÑÁË490Ôª£¬µÚ2´ÎËù¹ºÉÌÆ·µÄ±ê¼ÛΪ¶àÉÙÇ®£¿£¨ÇëÀûÓÃÒ»ÔªÒ»´Î·½³Ì½â´ð£©
£¨3£©ÈôСÀö½«ÕâÁ½´Î¹ºµÃµÄÉÌÆ·ºÏΪһ´Î¹ºÂò£¬ÊÇ·ñ¸üÊ¡Ç®£¿ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Ä³°àͬѧÏìÓ¦¡°Ñô¹âÌåÓýÔ˶¯¡±ºÅÕÙ£¬ÀûÓÿÎÍâ»î¶¯»ý¼«²Î¼ÓÌåÓý¶ÍÁ¶£¬Ã¿Î»Í¬Ñ§´Ó³¤ÅÜ¡¢Ç¦Çò¡¢Á¢¶¨ÌøÔ¶¡¢ÀºÇò¶¨Ê±¶¨µãͶÀºÖÐÈÎÑ¡Ò»Ïî½øÐÐÁËѵÁ·£¬ÑµÁ·ºó¶¼½øÐÐÁ˲âѵÁ·ºóÀºÇò¶¨µãͶÀº²âÊÔ½øÐÐÇòÈü½øÇòͳ¼Æ±í
½øÇòÊý£¨¸ö£©876543
ÈËÊý214782
ÇëÄã¸ù¾Ýͼ±íÖÐÐÅÏ¢»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÑµÁ·ºóÀºÇò¶¨Ê±¶¨µãͶÀºÈ˾ù½øÇòÊýΪ¶àÉÙ¸ö£¿
£¨2£©Ñ¡Ôñ³¤ÅÜѵÁ·µÄÈËÊýռȫ°àÈËÊýµÄ°Ù·Ö±ÈÊÇ10%£¬¸Ã°à¹²ÓÐͬѧ40ÈË£»
£¨3£©¸ù¾Ý²âÊÔ×ÊÁÏ£¬²Î¼ÓÀ¶Çò¶¨Ê±¶¨µãͶÀºµÄѧÉúѵÁ·ºó±ÈѵÁ·Ç°µÄÈ˾ù½øÇòÔö¼ÓÁË25%£¬Çó²Î¼ÓѵÁ·Ö®Ç°µÄÈ˾ù½øÇòÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÒÑÖª£ºAB=CD£¬BF¡ÍAC£¬DE¡ÍACÇÒAE=CF£¬ÇóÖ¤£ºAB¡ÎCD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆË㣺
£¨1£©$\sqrt{3}$¡Á$\sqrt{27}$¡Á£¨-$\sqrt{\frac{1}{27}}$£©£»
£¨2£©$\sqrt{\frac{a}{b}}$•£¨$\sqrt{\frac{b}{a}}$¡Â$\sqrt{\frac{1}{b}}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬AB¡ÎCD£¬EF·Ö±ð½»AB£¬CDÓÚM£¬N£¬¡ÏEND=50¡ã£¬¡ÏBMFµÄ½Çƽ·ÖÏßMG½»CDÓÚµãG£¬Çó¡Ï1µÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êýy=-$\frac{1}{|x|}$µÄͼÏóÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èô5+$\sqrt{11}$Óë5-$\sqrt{11}$µÄÕûÊý²¿·Ö·Ö±ðΪx£¬y£¬Ôòx+yµÄÁ¢·½¸ùÊÇ£¨¡¡¡¡£©
A£®$\root{3}{9}$B£®¡À$\root{3}{3}$C£®3D£®¡À$\root{3}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸