精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系中点A坐标为(2,﹣4),以A为顶点的抛物线经过坐标原点交x轴于点B

(1)求抛物线的解析式;

(2)取线段AB上一点D,以BD为直径作⊙Cx轴于点E,作EFAO于点F

求证:EF是⊙C的切线;

(3)设⊙C的半径为rEFm,求mr的函数关系式及自变量r的取值范围.

【答案】(1)y=x24x(2)证明见解析;(3) .

【解析】

1)结合已知条件可以知道抛物线经过A2-4),O00),代入解析式,即可求出抛物线的解析式;
2)连接CE,只要求证CEAO,结合已知推出EFCE,即可求证出结论;
3)作AHOBH点,结合勾股定理和抛物线的性质求出个线段的长度,根据平行线的性质,写出比例式,求出半径CB的长度

(1)ya(x2)24,把O(00)代入,得4a40

a1

y(x2)24yx24x

(2)连接CE

CECB

∴∠CEB=∠CBE

∵抛物线有对称性

AOAB

∴∠AOB=∠OBA

∴∠AOB=∠CEB

CEAO

EFAO

EFCE

EF是⊙C的切线

(3)AHOBH,∴OHHB2AH4AOAB

sinAOBsinABO

RTEFO中,EFOEsinBOA

(2)CEOA,∴△BEC∽△BOA

,即

BE

OEOBEB

即:

0r

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P是菱形ABCD边上的一动点,它从点A出发沿着ABCD路径匀速运动到点D,设PAD的面积为yP点的运动时间为x,则y关于x的函数图象大致为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为3的正方形纸片ABCD对折,使ABDC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N,那么折痕GH的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,弹性小球从点P03)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn,则点P2的坐标是_____,点P2017的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD90°,AO4CO2,接连接ADBC、点HBC中点,连接OH

1)如图1所示,求证:OHADOHAD

2)将△COD绕点O旋转到图2所示位置时,线段OHAD又有怎样的关系,证明你的结论;

3)请直接写出线段OH的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是边长为10的菱形,对角线AC、BD相交于点E,过点CCFDBAB延长线于点F,联结EFBC于点H.

(1)如图1,当EFBC时,求AE的长;

(2)如图2,以EF为直径作⊙O,O经过点C交边CD于点G(点C、G不重合),设AE的长为x,EH的长为y;

①求y关于x的函数关系式,并写出定义域;

②联结EG,当△DEG是以DG为腰的等腰三角形时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为(  )

A. (﹣ B. (﹣ C. (﹣ D. (﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知水龙头喷水的初始速度v0可以分解为横向初始速度vx和纵向初始速度vyθ是水龙头的仰角,且.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA15米,山坡的坡比为.离开水龙头后的水(看成点)获得初始速度v0/秒后的运动路径可以看作是抛物线,点M是运动过程中的某一位置.忽略空气阻力,实验表明:MA的高度之差d(米)与喷出时间t(秒)的关系为MA的水平距离为米.已知该水流的初始速度15/秒,水龙头的仰角θ

1)求水流的横向初始速度vx和纵向初始速度vy

2)用含t的代数式表示点M的横坐标x和纵坐标y,并求yx的关系式(不写x的取值范围);

3)水流在山坡上的落点C离喷射点A的水平距离是多少米?若要使水流恰好喷射到坡脚B处的小树,在相同仰角下,则需要把喷射点A沿坡面AB方向移动多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的AB两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,DBC=65°.AB=132米,求观景亭D到南滨河路AC的距离(结果精确到1米,参考数据:sin65°0.91,cos65°0.42,tan65°2.14).

查看答案和解析>>

同步练习册答案