精英家教网 > 初中数学 > 题目详情
11.解方程:9(3-y)2-4=0.

分析 首先将方程变形为a2=b(b≥0)的形式,然后再直接开平方即可.

解答 解:移项得:9(3-y)2=4,
整理得:$(3-y)^{2}=\frac{4}{9}$
∴3-y=$±\frac{2}{3}$.
∴y=3$±\frac{2}{3}$.
∴${y}_{1}=\frac{11}{3}$,${y}_{2}=\frac{7}{3}$.

点评 本题主要考查的是平方根的定义,利用平方根的定义求解是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.如图,△ABC的∠B与∠C的外角平分线相交于D点,∠A=50°,则∠D=75°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.阅读材料,解答问题:
材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以视(x2-1)为一个整体.然后设x2-1=y,原方程可化为
y2-5y+4=0①.解得y1=1,y2=4.
当y1=1时,x2-1=1,即x2=2,∴x=$±\sqrt{2}$.当y2=4时,x2-1=4,即x2=5,∴x=$±\sqrt{5}$.
∴原方程的解为x1=$\sqrt{2}$,x2=-$\sqrt{2}$,x3=$\sqrt{5}$,x4=-$\sqrt{5}$.
这是在由原方程得到①的过程中利用换元法,达到了降次的目的,体现了转化的数学思想.
利用上述方法解下列方程:x4-x2-6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列方程中,是一元二次方程的是(  )
A.2x+1=0B.x2+1=0C.y2+x=1D.$\frac{1}{x}$+x2=1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在在平面直角坐标系中,四边形ABCD是梯形,AD∥BC,E是BC的中点,BC=12,点A坐标是(0,4),CD所在直线的函数关系式为y=-x+9,点P是BC边上一个动点,
(1)当PB=1或11时,以点P、A、D、E为顶点的四边形为平行四边形;
(2)在(1)的条件下,点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在边长为2的正方形ABCD中,点E,F分别是BC,CD的中点,连接AE,AF,EF可得△AEF,求AE-EF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解方程:
(1)(x-2)2=25                
(2)2x2-3x-4=0
(3)x2-5x-6=0                
(4)(x+1)(x+2)=2x+4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若二次函数y=$\frac{1}{4}$x2+4x+m的图象全部在x轴的上方,则m的取值范围是m>16.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在平面直角坐标系中,抛物线y=$\frac{1}{2}{x^2}-\frac{1}{2}$x与直线y=$\frac{1}{2}x+\frac{3}{2}$交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:P1($\frac{3\sqrt{2}}{4}$,$\frac{3\sqrt{2}}{4}$),P2($\frac{3}{4}$,$\frac{3}{4}$),P3($\frac{3}{2}$,$\frac{3}{2}$).

查看答案和解析>>

同步练习册答案