精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,点D是边AB上的动点,过点DDEBCACE,过EEFABBCF,连结DF

(1)若点DAB的中点,证明:四边形DFEA是平行四边形

(2)若AC=8,BC=6,直接写出当△DEF为直角三角形时AD的长.

【答案】(1)见解析;(2)AD的值为5

【解析】

(1)先证明DFAEEFAD即可;

(2)分两种情形分别求解即可解决问题;

(1)证明:∵ADDBDEBC

AEEC

EFAB

BFCFADDB

DFACEFAB

∴四边形DFEA是平行四边形.

(2)情形1:当点DAB的中点,由(1)可知:DEBCDFEC

∴四边形DECF是平行四边形,

∵∠ECF=90°,

∴四边形DECF是矩形,

∴∠EDF=90°,DEF是直角三角形,此时ADAB×=5.

情形2:如图,当∠DFE=90°时,设ADx

AExBD=10﹣xEC=8﹣xBF(10﹣x),CF(8﹣x),

BF+CF=6,

(10﹣x)+(8﹣x)=6

x

综上所述,AD的值为5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,线段BC长为13,以C为顶点,CB为一边的∠α满足cosα=.锐角△ABC的顶点A落在∠α的另一边上,且满足sinA.求△ABC的高BDAB边的长,并结合你的计算过程画出高BDAB边.(图中提供的单位长度供补全图形使用)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?

说明理由.(1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).

(1)求直线BD和抛物线的解析式.

(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与MCD相似,求所有满足条件的点N的坐标.

(3)在抛物线上是否存在点P,使SPBD=6?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,洋洋和华华用所学的数学知识测量一条小河的宽度,河的对岸有一棵大树,底部记为点A,在他们所在的岸边选择了点B,并且使AB与河岸垂直,在B处与地面垂直竖起标杆BC,再在AB的延长线上选择点D,与地面垂直竖起标杆DE,使得A、C、E三点共线.经测量,BC=1m,DE=1.5m,BD=5m,求小河的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点FDE的延长线上,∠BFE=90°,连接AF、CF,CFAB交于G.有以下结论:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过正方形ABCD的顶点B作直线l,过点A,C作直线l的垂线,垂足分别为E,F,直线AE交CD于点G.

(1)求证:△ABE≌△BCF;

(2)若∠CBF=65°,求∠AGC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂拟建一座平面图形为矩形且面积为200平方米的三级污水处理池(平面图如图ABCD所示).由于地形限制,三级污水处理池的长、宽都不能超过16米.如果池的外围墙建造单价为每米400元,中间两条隔墙建造单价为每米300元,池底建造单价为每平方米80元.(池墙的厚度忽略不计)当三级污水处理池的总造价为47200元时,求池长x.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD

1)若∠A28°,求∠ACD的度数.

2)设BCaACb

①线段AD的长是方程x2+2axb20的一个根吗?说明理由.

②若ADEC,求的值.

查看答案和解析>>

同步练习册答案