精英家教网 > 初中数学 > 题目详情
6.如图,在等腰直角△ABC中,O是斜边AC的中点,P是斜边AC上的一个动点,D为BC上的一点,且PB=PD,DE⊥AC,垂足为E.
(1)试论证PE与BO的位置关系和大小关系.
(2)设AC=2a,AP=x,四边形PBDE的面积为y,试写出y与x之间的函数关系式,并写出自变量x的取值范围.

分析 (1)利用等腰直角三角形的性质得出OB⊥AC,即可得出PE与BO的位置关系,再利用全等三角形的判定得出△POB≌△DEP(AAS),得出PE与BO的大小关系.
(2)利用S四边形PBDE=S△ABC-S△APB-S△DEC,分别求出各图形面积,得出y与x之间的函数关系即可.

解答 (1)证明:∵O是等腰直角三角形ABC斜边AC的中点,
∴OB⊥AC;∠OBC=$\frac{1}{2}$∠ABC=45°,
又∵DE⊥AC,
∴∠BOP=∠PED=90°,
∵AB=BC,∠ABC=90°,
∴∠C=∠A=45°,
∵∠PDB=∠C+∠DPE,
∴∠PDB=45°+∠DPE,
∵PB=PD,
∴∠PBD=∠PDB,
∴∠PBO+45°=45°+∠DPE,
∴∠PBO=∠DPE,
在△POB和△DEP中,
$\left\{\begin{array}{l}{∠POB=∠PED}\\{∠OBP=∠EPD}\\{PB=PD}\end{array}\right.$,
∴△POB≌△DEP(AAS),
∴PE=BO;
故PE与BO的位置关系是PE⊥BO,大小关系是:PE=BO.                          
(2)解:∵O是等腰直角三角形ABC斜边AC的中点
∴OB=$\frac{1}{2}$AC,OB⊥AC,
∵AC=2a,
∴PE=OB=a,
∵AP=x,
∴CE=2a-a-x=a-x,
∴S△APB=$\frac{1}{2}$x•a=$\frac{1}{2}$ax,
∵DE⊥AC,∠C=45°,DE=CE=a-x,
∴S△DEC=$\frac{1}{2}$(a-x)2
∴S四边形PBDE=S△ABC-S△APB-S△DEC
∴y=$\frac{1}{2}$×2a×a-$\frac{1}{2}$ax-$\frac{1}{2}$(a-x)2
∴y=-$\frac{1}{2}$x2+$\frac{1}{2}$ax+$\frac{1}{2}$a2

点评 此题主要考查了全等三角形的判定与性质、等腰直角三角形的性质,寻找全等三角形是解题的关键,学会用分割法求四边形面积,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.某校积极推进“阳光体育活动”,本学期在九年级11个班中开展篮球单循环比赛(每个班与其他班级分别进行一场比赛,每班共要进行10场比赛),比赛规则规定每场比赛都要分出胜负,胜一场得3分,负一场得-1分,赛后有A,B,C,D四个班级得分情况如下表:
 参加班级 ABCD
 得分情况 1418 10 6
(1)根据以上信息,求A,B,C,D四个班级的平均分;
(2)若A班在所有的比赛中总得分为14分,则该班胜了几场?
(3)假设比赛结束后,E班得分比F,C两班得分之和的2倍还多2分,且E班获胜场数超过F,G两班获胜场数之和,请求出E班胜了几场?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)4-2×42
(2)-2.5×10-4
(3)($\frac{3}{10}$)3÷($\frac{3}{10}$)4
(4)(-2)5÷28

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.?ABCD中,AE⊥BC于点E,AF⊥CD于点F,∠EAF=60°,BE=3cm,DF=5cm,则?ABCD的面积为30$\sqrt{3}$cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.探究
问题1  已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为1.
拓展
问题2  已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.
推广
问题3  如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在边长为12$\sqrt{2}$的正方形ABCD中,E是AB边上一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG交EG于H,交AD于F点,连接CE,BH.若BH=16,则FG=10$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知抛物线y=ax2+bx+5(a≠0)经过A(5,0),B(6,1)两点,且与y轴交于点C.

(1)求抛物线y=ax2+bx+5(a≠0)的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A重合)经过A、E、O三点的圆交直线AB于点F,求出当△OEF的面积取得最小值时,点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.一组数据23、24、25、26、27的标准差是$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).
(1)求此抛物线的解析式;
(2)求此抛物线顶点坐标及对称轴;
(3)若抛物线上有一点B,且S△OAB=1,求点B的坐标.

查看答案和解析>>

同步练习册答案