分析 (1)利用直角三角形的性质“直角三角形斜边中线等于斜边的一半”得到DE=DF;
(2)利用等腰三角形的性质和判定得出结论,从而判定△MEB≌△MFA(AAS),得到DE=DF.
(3)利用三角形的中位线和直角三角形的性质根据SAS证明△DHE≌△FGD可得.
解答 解:(1)∵AE⊥BC,BF⊥AC
∴△AEB和△AFB都是直角三角形
∵D是AB的中点
∴DE和DF分别为Rt△AEB和Rt△AFB的斜边中线
∴DE=$\frac{1}{2}$AB,DF=$\frac{1}{2}$AB(直角三角形斜边中线等于斜边的一半)
∴DE=DF
∵DE=kDF
∴k=1
(2)∵CB=CA
∴∠CBA=∠CAB
∵∠MAC=∠MB
∴∠CBA-∠MBC=∠CAB-∠MAC
即∠ABM=∠BAM
∴AM=BM
∵ME⊥BC,MF⊥AC
∴∠MEB=∠MFA=90
又∵∠MBE=∠MAF
∴△MEB≌△MFA(AAS)
∴BE=AF
∵D是AB的中点,即BD=AD
又∵∠DBE=∠DAF
∴△DBE≌△DAF(SAS)
∴DE=DF
(3)DE=DF
如图1,作AM的中点G,BM的中点H,![]()
∵点 D是 边 AB的 中点
∴DG∥BM,DG=$\frac{1}{2}$BM
同理可得:DH∥AM,DH=$\frac{1}{2}$AM
∵ME⊥BC于E,H 是BM的中点
∴在Rt△BEM中,HE=$\frac{1}{2}$BM=BH
∴∠HBE=∠HEB
∠MHE=∠HBE+∠HEB=2∠MBC
又∵DG=$\frac{1}{2}$BM,HE=$\frac{1}{2}$BM
∴DG=HE
同理可得:DH=FG,∠MGF=2∠MAC
∵DG∥BM,DH∥GM
∴四边形DHMG是平行四边形
∴∠DGM=∠DHM
∵∠MGF=2∠MAC,∠MHE=2∠MBC
又∵∠MBC=∠MAC
∴∠MGF=∠MHE
∴∠DGM+∠MGF=∠DHM+∠MHE
∴∠DGF=∠DHE
在△DHE与△FGD中
$\left\{\begin{array}{l}{DG=HE}\\{∠DGF=∠DHE}\\{DH=FG}\end{array}\right.$,
∴△DHE≌△FGD(SAS),
∴DE=DF
点评 本题主要考查三角形全等的判定和性质;在证明三角形全等时,用到的知识点比较多,用到直角三角形的性质、三角形的中位线、平行四边形的性质和判定.
科目:初中数学 来源: 题型:选择题
| A. | 10 | B. | $\frac{1}{10}$ | C. | 1 | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com