精英家教网 > 初中数学 > 题目详情

【题目】将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.

(1)求点G的坐标;

(2)求直线EF的解析式;

(3)设点P为直线EF上一点,是否存在这样的点P,使以P, F, G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.

【答案】(1)G点的坐标为:(3,4-);(2)EF的解析式为:y=x+4-2;(3)P1(1,4-)、P2,7-2),P3(-,2-1)、P4(3,4+

【解析】分析:(1)点G的横坐标与点N的横坐标相同,易得EMBC的一半减去1,为1,EG=CE=2,利用勾股定理可得MG的长度,4MG的长度即为点G的纵坐标;

(2)由EMG的各边长可得∠MEG的度数为60°,进而可求得∠CEF的度数,利用相应的三角函数可求得CF长,4减去CF长即为点F的纵坐标,设出直线解析式,把E,F坐标代入即可求得相应的解析式;

(3)以点F为圆心,FG为半径画弧,交直线EF于两点;以点G为圆心,FG为半径画弧,交直线EF于一点;做FG的垂直平分线交直线EF于一点,根据线段的长度和与坐标轴的夹角可得相应坐标.

详解:(1)易得EM=1,CE=2,

EG=CE=2,

MG=

GN=4-

G点的坐标为:(3,4-);

(2)易得∠MEG的度数为60°,

∵∠CEF=FEG,

∴∠CEF=60°,

CF=2

OF=4-2

∴点F(0,4-2).

EF的解析式为y=kx+4-2

易得点E的坐标为(2,4),

把点E的坐标代入可得k=

EF的解析式为:y=x+4-2

(3)P1(1,4-)、P2,7-2),

P3(-,2-1)、P4(3,4+

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】王红有5张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:

(1)从中取出2张卡片,使这2张卡片上数字乘积最小,最小值是   

(2)从中取出2张卡片,使这2张卡片数字相除商最大,最大值是   

(3)从中取出除0以外的4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,(注:每个数字只能用一次,如:23×[1﹣(﹣2)]),请另写出一种符合要求的运算式子   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将直角边长为6的等腰直角△AOC放在平面直角坐标系中,点O为坐标原点,点C、A分别在x轴,y轴的正半轴上,一条抛物线经过点A、C及点B(﹣3,0).

(1)求该抛物线的解析式;
(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
(3)若点P(t,t)在抛物线上,则称点P为抛物线的不动点,将(1)中的抛物线进行平移,平移后,该抛物线只有一个不动点,且顶点在直线y=2x﹣ 上,求此时抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数分别填入相应的集合里:+(-2),0,﹣0.314,(两个1间的0的个数依次多1个)﹣(﹣11),

正有理数集合:{     …},

无理数集合: {     …},

整数集合: {       …},

分数集合: {       …}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】5×4的网格中,每个小正方形的边长是1个单位长.

(1)先在图中将面积是5的一个长方形分割成5块,然后再画出用这5块拼成的一个正方形;

(2)设拼成的正方形的边长为a个单位长,

a是有理数还是无理数?

②试在数轴上将a的相反数表示出来;

③求出a的近似值(保留一位小数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
(1)求证:AE为⊙O的切线;
(2)当BC=4,AC=6时,求⊙O的半径;
(3)在(2)的条件下,求线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y= 的图形如图,以下结论: ①m<0;
②在每个分支上y随x的增大而增大;
③若点A(﹣1,a),点B(2,b)在图象上,则a<b;
④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图是用棋子摆成的“T”字图案.从图案中可以看出,第一个“T”字图案需要5枚棋子,第二个“T”字图案需要8枚棋子,第三个“T”字图案需要11枚棋子

(1)照此规律,摆成第八个图案需要几枚棋子?

(2)摆成第n个图案需要几枚棋子?

(3)摆成第2008个图案需要几枚棋子?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在数轴上A点表示数,B点表示数满足||+||=0;

(1)点A表示的数为_____;点B表示的数为_____

(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),

①当t=1时,甲小球到原点的距离=_____;乙小球到原点的距离=_____.

t=3时,甲小球到原点的距离=_____;乙小球到原点的距离=_____.

②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.

查看答案和解析>>

同步练习册答案