精英家教网 > 初中数学 > 题目详情

【题目】为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表所 示是该市居民一户一表生活用水及提示计费价格表的部分信息:

自来水销售价格

污水处理价格

每户每月用水量

单价:元/

单价:元/

17 吨以下

a

0.80

超过 17 吨但不超过 30

吨的部分

b

0.80

超过 30 吨的部分

6.00

0.80

(说明:每户产生的污水量等于该户自来水用水量;水费自来水费用 污水处理费用)

已知小明家 2017 5 月份用水 20 吨,交水费 66 元;6 月份用水 25 吨交水费91

(1)a b 的值;

(2)为了节约开支,小明家计划把 7 月份的水费控制在不超过家庭月收入的2% .若小明家的月收入为 9200 元,则小明家 7 月份最多能用水多少吨?

【答案】(1)a 2.2 , b 4.2 ;(2)小明家七月份最多能用水 40 吨.

【解析】

试题解:(1,解得5

2)设用水x吨,92002=184116,所以x可以超过30116+(x-30)6.8,解得,所以最多40吨。 5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx-3经过A(-1,0)、B(3,0)两点,与y轴交于C点,

(1)求抛物线的解析式;
(2)如图①,抛物线的对称轴上有一点P,且点P在x轴下方,线段PB绕点P顺时针旋转90°,点B的对应点B′恰好落在抛物线上,求点P的坐标;
(3)如图②,直线y= x+ 交抛物线于A、E两点,点D为线段AE上一点,连接BD,有一动点Q从B点出发,沿线段BD以每秒1个单位的速度运动到D,再沿DE以每秒钟2个单位的速度运动到E,问:是否存在点D,使点Q从点B到E的运动时间最少,若存在,请求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0),B(4,0)两点,与y轴交于点C,且OC=3OA,点P是抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线BC于点D,连接PC.

(1)试求抛物线的解析式;
(2)如图2,当动点P只在第一象限的抛物线上运动时,过点P作PF⊥BC于点F,试问△PFD的周长是否有最大值?如果有,请求出最大值;如果没有,请说明理由.
(3)当点P在抛物线上运动时,将△CPD沿直线CP翻折,点D的对应点为点Q,试问,四 边形CDPQ能否成为菱形?如果能,请求此时点P的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系 中,已知直线 )分别交反比例函数 在第一象限的图象于点 ,过点 轴于点 ,交 的图象于点 ,连结 .若 是等腰三角形,则 的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 的直角边 上一点,以 为半径的 与斜边 相切于点 ,交 于点 .已知

(1)求 的长;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AB=AC=10cmBC=8cm,点DAB的中点.

(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1s后,BPDCQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPDCQP全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC三边运动,求经过多长时间点P与点Q第一次在ABC的哪条边上相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EFAC于点F,若DBC边上的中点,M为线段EF上一动点,则BDM的周长最短为______cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.
(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;

(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,CFAB于F,BEAC于E,CF与BE交于点D.有下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在BAC的平分线上;点C在AB的中垂线上.以上结论正确的有__________(填序号)

查看答案和解析>>

同步练习册答案