精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.
(1)求证:△ADE≌△CBF;
(2)求证:四边形BFDE为矩形.

【答案】
(1)证明:∵DE⊥AB,BF⊥CD,

∴∠AED=∠CFB=90°,

∵四边形ABCD为平行四边形,

∴AD=BC,∠A=∠C,

在△ADE和△CBF中,

∴△ADE≌△CBF(AAS);


(2)∵四边形ABCD为平行四边形,

∴CD∥AB,

∴∠CDE+∠DEB=180°,

∵∠DEB=90°,

∴∠CDE=90°,

∴∠CDE=∠DEB=∠BFD=90°,

则四边形BFDE为矩形.


【解析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,E是AC上一点,且AE=AB,∠EBC= ∠BAC,以AB为直径的⊙O交AC于点D,交EB于点F.
(1)求证:BC与⊙O相切;
(2)若AB=8,sin∠EBC= ,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求点B的坐标;
(2)求证:四边形ABCE是平行四边形;
(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形④S四边形ABMD= AM2
其中正确结论的是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )

A.(1,
B.(﹣1,2)
C.(﹣1,
D.(﹣1,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,链接BM

(1)菱形ABCO的边长
(2)求直线AC的解析式;
(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
①当0<t< 时,求S与t之间的函数关系式;
②在点P运动过程中,当S=3,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(π﹣3.14)0+|cos30°﹣3|﹣( 2+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图(1),PAB为⊙O的割线,直线PC与⊙O有公共点C,且PC2=PA×PB,

(1)求证:∠PCA=∠PBC;直线PC是⊙O的切线;
(2)如图(2),作弦CD,使CD⊥AB,连接AD、BC,若AD=2,BC=6,求⊙O的半径;

(3)如图(3),若⊙O的半径为 ,PO= ,MO=2,∠POM=90°,⊙O上是否存在一点Q,使得PQ+ QM有最小值?若存在,请求出这个最小值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为

查看答案和解析>>

同步练习册答案