【题目】如图,在中,是高线,过点作于点,于点,且,则下列判断中不正确的是( )
A.是的平分线B.
C.D.图中有对全等三角形
【答案】C
【解析】
首先判定Rt△AED≌Rt△AFD,即可得出AE=AF,∠EAD=∠FAD,判定C选项错误,然后根据角平分线的性质判定A选项正确,再根据三线合一的性质判定△ADB≌△ADC,进而判定B选项正确,最后判定Rt△BED≌Rt△CFD得出D选项正确.
∵,
∴∠AED=∠AFD=90°
∵,AD=AD
∴Rt△AED≌Rt△AFD(Hl)
∴AE=AF,∠EAD=∠FAD,故C错误;
∴是的平分线,故A正确;
∵是高线
∴BD=CD,∠ADB=∠ADC=90°
∵AD=AD
∴△ADB≌△ADC(SAS)
∴∠B=∠C,AB=AC,故B正确;
∴Rt△BED≌Rt△CFD(Hl),故D正确;
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+2与x轴、y轴分别交于A、B两点,OA:OB=.以线段AB为边在第二象限内作等腰Rt△ABC,∠BAC=90°.
(1)求点A的坐标和k的值;
(2)求点C坐标;
(3)直线y=x在第一象限内的图象上是否存在点P,使得△ABP的面积与△ABC的面积相等?如果存在,求出点P坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是△ABC的内心,AE的延长线交△ABC的外接圆于点D.
(1)BD与DE相等吗?为什么?
(2)若∠BAC=90°,DE=4,求△ABC外接圆的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=60°,点D是BC边的中点,DE⊥BC,∠ABC的平分线BF交DE于△ABC内一点P,连接PC.
(1)若∠ABP=32°,求∠ACP的度数;
(2)若∠ACP=m°,∠ABP=n°,请直接写出m,n满足的关系式:________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设函数y=kx2+(3k+2)x+1,对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值为( )
A. 2 B. ﹣2 C. ﹣1 D. 0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与直线都经过坐标轴的正半轴上A(4,0),B两点,该抛物线的对称轴x=﹣1,与x轴交于点C,且∠ABC=90°,求:
(1)直线AB的解析式;
(2)抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕着点B顺时针旋转角a(0°<a<90°)得到△A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论.
(2)如图2,当a=30°时,试判断四边形BC1DA的形状,并证明.
(3)在(2)的条件下,求线段DE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.
(1)利用尺规作图作出点D,不写作法但保留作图痕迹.
(2)若△ABC的底边长5,周长为21,求△BCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABE≌△ACD,且AB=AC.
(1)说明△ABE经过怎样的变换后可与△ACD重合.
(2)∠BAD与∠CAE有何关系?请说明理由.
(3)BD与CE相等吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com