【题目】如图,在半径为的扇形中,,点是弧上的一个动点(不与点、重合),,垂足分别为、.
当时,求线段的长;
在中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
设,的面积为,求关于的函数关系式,并写出的范围.
【答案】(1) ;(2)见解析;(3)见解析.
【解析】
(1)图(1)中,根据垂径定理可得BD=BC,然后只需运用勾股定理即可求出线段OD的长;
(2)连接AB,如图(2),用勾股定理可求出AB的长,根据垂径定理可得D和E分别是线段BC和AC的中点,根据三角形中位线定理就可得到DE=AB,DE保持不变;
(3)过D作DF⊥OE于F,连接OC,如图(3),运用等腰三角形的性质可推出∠DOE=45°,在Rt△OFD中,运用三角函数可求出OF、DF,在Rt△DFE中,运用勾股定理可求出EF,从而求出OE,就可解决问题.
)如图,
∵,
∴.
∵,,,
∴,
即线段的长为;
存在,保持不变.
理由:连接,如图,
∵,,
∴,
∵,,
∴和分别是线段和的中点,
∴,
∴保持不变;
过作于,连接,如图.
∵,,,
∴,
∵,,,
∴,,
∴,即,
在中,
∵,,
∴,
,
在中,
∵,,
∴,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】(问题情境)如图,中,,,我们可以利用与相似证明,这个结论我们称之为射影定理,试证明这个定理;
(结论运用)如图,正方形的边长为,点是对角线、的交点,点在上,过点作,垂足为,连接,
(1)试利用射影定理证明;
(2)若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:在平面直角坐标系中,每个小正方形的边长为1,△ABC的顶点都在格点上,点A的坐标为(-3,2).请按要求分别完成下列各小题:
(1)把△ABC向下平移7个单位,再向右平移7个单位,得到△A1B1C1,画出△A1B1C1;
(2)画出△A1B1C1关于x轴对称的△A2B2C2;
画出△A1B1C1关于y轴对称的△A3B3C3;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列条件中,不能判断△ABC是直角三角形的是( )
A. a:b:c=3:4:5 B. ∠A:∠B:∠C=3:4:5
C. ∠A+∠B=∠C D. a:b:c=1:2:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是( )
A. B. C. 6 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.
(1)如图,当α=60°时,延长BE交AD于点F.
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长;
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB是半圆O的直径,AC是弦,点P沿BA方向,从点B运动到点A,速度为1cm/s,若AB=10cm,点O到AC的距离为4cm.
(1)求弦AC的长;
(2)问经过多长时间后,△APC是等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com