【题目】已知:点M是平行四边形ABCD对角线AC所在直线上的一个动点(点M不与点A、C重合),分别过点A、C向直线BM作垂线,垂足分别为点E、F,点O为AC的中点.
⑴如图1,当点M与点O重合时,OE与OF的数量关系是 .
⑵直线BM绕点B逆时针方向旋转,且∠OFE=30°.
①如图2,当点M在线段AC上时,猜想线段CF、AE、OE之间有怎样的数量关系?请你写出来并加以证明;
②如图3,当点M在线段AC的延长线上时,请直接写出线段CF、AE、OE之间的数量关系.
【答案】(1)OE=OF;(2)①,详见解析;②CF=OE-AE
【解析】
(1)由△AOE≌△COF即可得出结论.
(2)①图2中的结论为:CF=OE+AE,延长EO交CF于点N,只要证明△EOA≌△NOC,△OFN是等边三角形,即可解决问题.
②图3中的结论为:CF=OE-AE,延长EO交FC的延长线于点G,证明方法类似.
解:⑴∵
∴AE∥CF
∴ 又,OA=OC
∴△AOE≌△COF.
∴OE=OF.
⑵①
延长EO交CF延长线于N.
∵
∴AE∥CF
∴ 又,OA=OC
∴△OAE≌△OCN
∴AE=CN,OE=ON 又,
∴OF=ON=OE,
∴OF=FN=ON=OE,又AE=CN
∴CF=AE-OE
②CF=OE-AE,证明如下:
延长EO交FC的延长线于点G
∵
∴AE∥CF
∴∠G=∠AEO,∠OCG=∠EA0,
又∵AO=OC,
∴△OAE≌△OCG.
∴AE=CG,OG=OE.
又,
∴OF=OG=OE,
∴△OGF是等边三角形,
∴FG=OF=OE.
∴CF=OE-AE.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于点和,给出如下定义:
如果,那么称点为点的“伴随点”.
例如:点的“伴随点”为点;点的“伴随点”为点.
(1)直接写出点的“伴随点”的坐标.
(2)点在函数的图象上,若其“伴随点”的纵坐标为2,求函数的解析式.
(3)点在函数的图象上,且点关于轴对称,点的“伴随点”为.若点在第一象限,且,求此时“伴随点”的横坐标.
(4)点在函数的图象上,若其“伴随点”的纵坐标的最大值为,直接写出实数的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了解学生疫情期间一天在线学习时长,进行了一次随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:
(1)求参与问卷调查的总人数.
(2)补全条形统计图,并求出一天在线学习“5﹣7个小时”的扇形圆心角度数.
(3)若该校共有学生1800名,试估计全校一天在线学习“7小时以上”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明是一名健步走运动的爱好者,他用手机软件记录了他近期健步走的步数(单位:万步),绘制出如下的统计图①和统计图②,请根据相关信息,解答下列问题:
(Ⅰ)本次记录的总天数为_____________,图①中m的值为______________;
(Ⅱ)求小名近期健步走步数的平均数、众数和中位数;
(Ⅲ)根据样本数据,若小明坚持健步走一年(记为365天),试估计步数为1.1万步的天数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).
⑴在平面直角坐标系中画出△ABC关于原点对称的△A1B1C1;
⑵把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.请写出:
①旋转角为 度;
②点B2的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将四边形ABCD放在每个小正方形的边长为1的网格中,点A.B、C、D均落在格点上.
(Ⅰ)计算AD2+DC2+CB2的值等于_____;
(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AD2+DC2+CB2,并简要说明画图方法(不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形的两条对称轴为坐标轴,点的坐标为.一张透明纸上画有一个点和一条抛物线,平移透明纸,使点与点重合,此时抛物线的函数表达式为,再次平移透明纸,使点与点重合,则该抛物线的函数表达式变为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,是等边三角形,点,点,点是边上的一个动点(与点、不重合).直线是经过点的一条直线,把沿直线折叠,点的对应点是点.
(1)如图①,当时,若直线,求点的坐标;
(2)如图②,当点在边上运动时,若直线,求的面积;
(3)当时,在直线变化过程中,求面积的最大值(直接写出结果即可).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com