【题目】如图,过正方形的顶点,且与相切于点分别交于两点,连接并延长交于点.
(1)求证
(2)连接交于点,连接,若求的长.
【答案】(1)证明见解析;(2).
【解析】
(1)根据⊙O与BC相切于点M,可得∠BMN=90°,得四边形ABCD是正方形,再根据垂径定理即可证明AN=DN;
(2)解法一:接DE,EF,DG,可得DE是⊙O的直径,且四边形AEFD是矩形,由(1)知四边形ABMN是矩形,设OA=r,则ON=8-r,AN=4,在Rt△AON中,根据勾股定理可得r的值,然后由∠BFE=∠EDG,得sin∠BFE=sin∠EDG,进而可得EG的长;
解法二:连接由圆周角定理可得是的直径,且四边形是矩形,由(1)知四边形ABMN是矩形,设OA=r,则ON=8-r,AN=4,在Rt△AON中,根据勾股定理可得r的值,由圆内接四边形性质求得,从而利用AA定理求得,从而利用相似三角形的性质列比例式求解即可.
解: 与边相切与点,
四边形是正方形,
由垂径定理得
解法一:连接
,
是的直径,且四边形是矩形.
由知四边形是矩形,
设,在中
由勾股定理得,解得
,
,
即
解法二:连接
是的直径,且四边形是矩形,
由知四边形是矩形,
设,在中,
由勾股定理得,解得
即
.
科目:初中数学 来源: 题型:
【题目】已知:点M是平行四边形ABCD对角线AC所在直线上的一个动点(点M不与点A、C重合),分别过点A、C向直线BM作垂线,垂足分别为点E、F,点O为AC的中点.
⑴如图1,当点M与点O重合时,OE与OF的数量关系是 .
⑵直线BM绕点B逆时针方向旋转,且∠OFE=30°.
①如图2,当点M在线段AC上时,猜想线段CF、AE、OE之间有怎样的数量关系?请你写出来并加以证明;
②如图3,当点M在线段AC的延长线上时,请直接写出线段CF、AE、OE之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E为BC边上的一点,连接AE,过点D作DM⊥AE,垂足为点M,交AB于点F.将△AMF沿AB翻折得到△ANF.延长DM,AN交于点P. 给出以下结论①;②;③;④若,则;.其中正确的是( )
A.①②③④B.①②③C.①②④D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴负半轴交于点,与轴正半轴交于点,与轴负半轴交于点,,,.
(1)求点的坐标和抛物线的函数关系式;
(2)点是上一点(不与点、重合),过点作轴的垂线,交抛物线于点,交于点,当时,求点的坐标;
(3)设抛物线的对称轴交轴于点,在(2)的条件下,点是抛物线对称轴上一点,点是坐标平面内一点,是否存在点、,使以、、、为顶点的四边形是菱形?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小元步行从家去火车站,走到 6 分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3 分钟.小元离家路程S(米)与时间t(分钟)之间的函数图象如图,从家到火车站路程是( )
A.1300 米B.1400 米C.1600 米D.1500 米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,折叠矩形,具体操作:①点为边上一点(不与、重合),把沿所在的直线折叠,点的对称点为点;②过点对折,折痕所在的直线交于点、点的对称点为点.
(1)求证:∽.
(2)若,.
①点在移动的过程中,求的最大值.
②如图2,若点恰在直线上,连接,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com