精英家教网 > 初中数学 > 题目详情

【题目】在如图所示的5×5的正方形网格中,每个小正方形的边长均为1,按下列要求画图或填空;

1)画一条线段AB使它的另一端点B落在格点上(即小正方形的顶点),且AB=2

2)以(1)中的AB为边画一个等腰△ABC,使点C落在格点上,且另两边的长都是无理数;

3)△ABC的周长为      ,面积为      

【答案】1)见解析;(2)见解析;(34.

【解析】

(1)直接利用勾股定理得出B点位置;
(2)利用勾股定理结合等腰三角形的性质得出答案;
(3)直接利用勾股定理以及三角形面积求法得出答案.

解:(1)如图所示:AB即为所求;

(2)如图所示:△ABC即为所求;

(3)周长为:2++=2(+),
面积为:9-×1×3-×2×2-×1×3=4.
故答案为:2(+),4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.

1)根据图示填写下表:

2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;

3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式(组):

(Ⅰ)解不等式:

(Ⅱ)解不等式组

请结合题意填空,完成本题的解答;

1)解不等式,得:   

2)解不等式,得:   

3)把不等式的解集在如图数轴上表示出来;

4)原不等式组的解集为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是

A. BC=AC B. CFBF C. BD=DF D. AC=BF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BCAB的夹角分别为45°68°,若点C到地面的距离CD28cm,坐垫中轴E处与点B的距离BE4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;

(2)若ABAC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知梯形ABCD中,ABCD,D=90°,BE平分∠ABC,交CD于点E,FAB的中点,联结AE、EF,且AEBE.

求证:(1)四边形BCEF是菱形;

(2).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若线段上的一个点把这条线段分成12的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且ACCB12,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.

1)已知:如图2DE15cm,点PDE的三等分点,求DP的长.

2)已知,线段AB15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.

若点PQ同时出发,且当点P与点Q重合时,求t的值.

若点PQ同时出发,且当点P是线段AQ的三等分点时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,规定:抛物线y=a(xh) +k的关联直线为y=a(xh)+k.

例如:抛物线y=2(x+1) 3的关联直线为y=2(x+1)3,即y=2x1.

(1)如图,对于抛物线y=(x1) +3.

①该抛物线的顶点坐标为___,关联直线为___,该抛物线与其关联直线的交点坐标为______

②点P是抛物线y=(x1) +3上一点,过点P的直线PQ垂直于x,交抛物线y=(x1) +3的关联直线于点Q.设点P的横坐标为m,线段PQ的长度为d(d>0),求当dm的增大而减小时,dm之间的函数关系式,并写出自变量m的取值范围。

(2)顶点在第一象限的抛物线y=a(x1) +4a与其关联直线交于点A,B(A在点B的左侧),与x轴负半轴交于点C,直线ABx轴交于点D,连结ACBC.

①求△BCD的面积(用含a的代数式表示).

②当△ABC为钝角三角形时,直接写出a的取值范围。

查看答案和解析>>

同步练习册答案