精英家教网 > 初中数学 > 题目详情

【题目】校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.

(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.

(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.

【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2

【解析】

(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.

(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.

(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,

根据题意得:x(32﹣2x)=126,

解得:x1=7,x2=9,

32﹣2x=1832﹣2x=14,

∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.

(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,

根据题意得:y(36﹣2y)=170,

整理得:y2﹣18y+85=0.

∵△=(﹣18)2﹣4×1×85=﹣16<0,

∴该方程无解,

假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)

(1)是否存在某一时刻t,使得PQBD?若存在,求出t值;若不存在,说明理由

(2)设PQC的面积为s(cm2),求st之间的函数关系式;

(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使SQCM:SPCM=3:5?若存在,求出t值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数abc为常数且a≠0)中的xy的部分对应值如下表:

x

3

2

1

0

1

2

3

4

5

y

12

5

0

3

4

3

0

5

12

给出了结论:

1)二次函数有最小值,最小值为﹣3

2)当时,y0

3)二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.

则其中正确结论的个数是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。

(1)若∠ACD=114°,求∠MAB的度数;

(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△ADE中,AB=AD, AC=AE, 1=2

1)求证:△ABC≌△ADE;

2)找出图中与∠1 ,∠2相等的角(用图中给出的已知点直接写出结论,不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线平行,直线分别截于点两点.

1)如图①,有一动点在线段之间运动(不与EF两点重合),试探究的等量等关系?试说明理由.

2)如图②、③,当动点在线段之外运动(不与EF两点重合),问上述结论是否还成立?若不成立,试写出新的结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,晚上小亮在广场上乘凉,图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.

请你再图中画出小亮在照明灯P照射下的影子BC

如果灯杆高PO=12m小亮的身高AB=1.6m小亮与灯杆的距离BO=13m请求出小亮影子的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)如图所示,二次函数y=-mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B,Cx轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内,且点A在点D的左侧.

(1)求二次函数的解析式;

(2)设点A的坐标为(x,y),试求矩形ABCD的周长p关于自变量x的函数解析式,并求出自变量x的取值范围;

(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EABCD内部,AFBEDFCE.

(1)求证:△BCE≌△ADF

(2)ABCD的面积为20,求四边形AEDF的面积.

查看答案和解析>>

同步练习册答案