精英家教网 > 初中数学 > 题目详情
8.如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30度,则坝底AD的长度为(  )
A.56米B.66米C.(56+20$\sqrt{3}$)米D.(50$\sqrt{2}$+20$\sqrt{3}$)米

分析 过梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形,利用相应的性质求解即可.

解答 解:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形,
由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1:2.5,
在Rt△ABE中,
∵$\frac{BE}{AE}$=$\frac{1}{2.5}$,
∴AE=50米,
在Rt△CFD中,
∵∠D=30°,
∴DF=CFcot∠D=20$\sqrt{3}$米,
∴AD=AE+EF+FD=50+6+20$\sqrt{3}$=(56+20$\sqrt{3}$)米.
故选C.

点评 本题考查了坡度及坡角的知识,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知点C、D在线段AB上,AC:BC=2:3,AD:BD=2:5,DC=8cm,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若一组数据3,3,4,x,8的平均数是4,则这组数据的中位数是3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,⊙O中,AD、BC是圆O的弦,OA⊥BC,∠AOB=50°,CE⊥AD,则∠DCE的度数是(  )
A.25°B.65°C.45°D.55°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在矩形ABCD中,AB=5,BC=24,M是BC的中点,若点P为线段AD上的一点,连接AM、PM,△PAM是以AP为腰的等腰三角形,则AP的长为13或$\frac{169}{24}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.在有理数-3,0,3,4中,最小的有理数是(  )
A.-3B.0C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,已知∠AOB=60°,点P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=2,则ON=(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.请写出一个当x>0时,y随着x的增大而增大的反比例函数的解析式y=-$\frac{1}{x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知抛物线的顶点是C(0,m)(m>0,m为常数),并经过点(2m,2m),点D(0,2m)为一定点.
(1)求抛物线的解析式;(用含字母m的代数式表示)
(2)设点P是抛物线上任意一点,过P作PH⊥x轴,垂足是H,试探究PD与PH的大小关系,并说明理由;
(3)设过原点O的直线l与抛物线在第一象限相交于A、B两点,若DA=2DB,且S△ABD=4$\sqrt{2}$,求m的值.

查看答案和解析>>

同步练习册答案