【题目】如图1,在平面直角坐标系中,A点的坐标为(m,3),AB⊥x轴于点B,tan∠OAB=,反比例函数y1=的图象的一支经过AO的中点C,且与AB交于点D.
(1)求反比例函数解析式;
(2)设直线OA的解析式为y2=nx,请直接写出y1<y2时,自变量x的取值范围 .
(3)如图2,若函数y=3x与y1=的图象的另一支交于点M,求△OMB与四边形OCDB的面积的比值.
【答案】(1)y=;(2)﹣2<x<0或x>2;(3)8:5.
【解析】
(1)在Rt△AOB中,根据tan∠OAB=求出OB,再求出点A、C坐标即可解决问题.
(2)根据函数图象直接得到答案.
(3)利用方程组求出点M坐标,分别求出三角形OMB与四边形OCDB的面积即可解决问题.
(1)在Rt△AOB中,∵AB=3,∠ABO=90°,
∴tan∠OAB==,
∴OB=4,
∴点A(4,3),
∵点C是OA中点,
∴点C坐标(2,),
∵反比例函数y=的图象的一支经过点C,
∴k=3,
∴反比例函数解析式为y=.
(2)如图1,由反比例函数及正比例函数图象的对称性质得到点C关于原点对称的C′的坐标为(﹣2,﹣),
结合图象得到:当y1<y2时,自变量x的取值范围是﹣2<x<0或x>2.
故答案是:﹣2<x<0或x>2.
(3)由解得或,
∵点M在第三象限,
∴点M坐标(﹣1,﹣3),
∵点D坐标(4,),
∴S△OBM=×4×3=6,S四边形OBDC=S△AOB﹣S△ACD=×4×3﹣×2×=,
∴三角形OMB与四边形OCDB的面积的比=6:=8:5.
科目:初中数学 来源: 题型:
【题目】某书店老板去图书批发市场购买某种图书,第一次用元购书若干本, 并按该书定价元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了,他用元所购该书数量比第一次多本.当按定价元售出本时,出现滞销,便以定价的折售完剩余的书.
每本书第一次的批发价是多少钱?
试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:
(1)本次活动抽查了 名学生;
(2)请补全条形统计图;
(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是 度;
(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正确的是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,M、N分别在AB、CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=32°,则∠OBC的度数为( )
A.32°B.48°C.58°D.68°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )
A.扇形统计图能反映各部分在总体中所占的百分比
B.每天阅读30分钟以上的居民家庭孩子超过50%
C.每天阅读1小时以上的居民家庭孩子占20%
D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形AOBC中,对角线交于点E,双曲线y=(k>0)经过A、E两点,若AC : OB = 1:3,梯形AOBC面积为24,则k =( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com