【题目】有一辆宽为的货车(如图①),要通过一条抛物线形隧道(如图②).为确保车辆安全通行,规定货车车顶左右两侧离隧道内壁的垂直高度至少为.已知隧道的跨度为,拱高为.
(1)若隧道为单车道,货车高为,该货车能否安全通行?为什么?
(2)若隧道为双车道,且两车道之间有的隔离带,通过计算说明该货车能够通行的最大安全限高.
【答案】(1)货车能安全通行,理由见解析;(2)最大安全限高为2.29米
【解析】
(1)根据跨度求出点B的坐标,然后设抛物线顶点式形式y=ax2+4,然后把点B的坐标代入求出a的值,即可得解;
(2)根据车的宽度为2,求出x=2.2时的函数值,再根据限高求出货车的最大限制高度即可.
(1)货车能安全通行.
∵隧道跨度为8米,隧道的顶端坐标为(O,4),
∴A、B关于y轴对称,
∴OA=OB=AB=×8=4,
∴点B的坐标为(4,0),
设抛物线顶点式形式y=ax2+4,
把点B坐标代入得,16a+4=0,
解得a=-,
所以,抛物线解析式为y=-x2+4(-4≤x≤4);
由可得,.
∵,
∴货车能够安全通行.
答:货车能够安全通行.
(2)当时, =2.79.
∵,
∴货车能够通行的最大安全限高为2.29米.
答:货车能够通行的最大安全限高为2.29米.
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,为边的中点,为边上一动点(不与重合),将沿直线折叠,使点落在点处,连接,,当为等腰三角形时,的长为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在6×8的网格中,每个小正方形的边长均为1,点O和△ABC的顶点均为小正方形的顶点.
(1)在图中△ABC的内部作△A′B′C′,使△A′B′C′和△ABC位似,且位似中心为点O,位似比为1:2;
(2)连接(1)中的AA′,则线段AA′的长度是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DFEC的面积之比是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰中,.点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90得到EF.
(1)如图1,若,点E与点C重合,AF与DC相交于点O.求证:.
(2)已知点G为AF的中点.
①如图2,若,求DG的长.
②若,是否存在点E,使得是直角三角形?若存在,求CE的长;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数m使关于x的不等式组至少有一个非负整数解,且使关于x的分式方程有不大于5的整数解,则所有满足条件的m的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com