如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;
(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)
![]()
【考点】切线的判定与性质;全等三角形的判定与性质;勾股定理.
【专题】几何综合题;压轴题.
【分析】(1)只要证明OE垂直BC即可得出BC是小圆的切线,即与小圆的关系是相切.
(2)利用全等三角形的判定得出Rt△OAD≌Rt△OEB,从而得出EB=AD,从而得到三者的关系是前两者的和等于第三者.
(3)根据大圆的面积减去小圆的面积即可得到圆环的面积.
【解答】解:(1)BC所在直线与小圆相切.
理由如下:
过圆心O作OE⊥BC,垂足为E;
∵AC是小圆的切线,AB经过圆心O,
∴OA⊥AC;
又∵CO平分∠ACB,OE⊥BC,
∴OE=OA,
∴BC所在直线是小圆的切线.
(2)AC+AD=BC.
理由如下:
连接OD.
∵AC切小圆O于点A,BC切小圆O于点E,
∴CE=CA;
∵在Rt△OAD与Rt△OEB中,
,
∴Rt△OAD≌Rt△OEB(HL),
∴EB=AD;
∵BC=CE+EB,
∴BC=AC+AD.
(3)∵∠BAC=90°,AB=8cm,BC=10cm,
∴AC=6cm;
∵BC=AC+AD,
∴AD=BC﹣AC=4cm,
∵圆环的面积为:S=π(OD)2﹣π(OA)2=π(OD2﹣OA2),
又∵OD2﹣OA2=AD2,
∴S=42π=16π(cm2).
![]()
【点评】此题考查了学生对切线的性质与判定,全等三角形的判定,勾股定理等知识点的综合运用能力.
科目:初中数学 来源: 题型:
如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=
,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.
(1)当圆C经过点A时,求CP的长;
(2)连结AP,当AP//CE时,求弦EF的长;
(3)当△AGE是等腰三角形时,求圆C的半径长.
![]()
图1 备用图
查看答案和解析>>
科目:初中数学 来源: 题型:
如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC;
①将△ABC向x轴正方向平移5个单位得△A1B1C1,
②再以O为旋转中心,将△A1B1C1旋转180°得△A2B2C2,画出平移和旋转后的图形,并标明对应字母.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于…………………………………………………( )
A.10; B.7; C.5; D.4;
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知A(-2,3)、B(4,3)、C(-1,-3)
(1)求点C到x轴的距离;
(2)求△ABC的面积;
(3)点P在y轴上,当△ABP的面积为6时,请直接写出
点P的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com