如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为( )
![]()
A.2 B.2
C.
D.2![]()
B. 【考点】切线的性质;勾股定理;圆周角定理.
【专题】压轴题.
【分析】作辅助线,连接OC与OE.根据一条弧所对的圆周角等于它所对的圆心角的一半,可知∠EOC的度数;再根据切线的性质定理,圆的切线垂直于经过切点的半径,可知OC⊥AB;又EF∥AB,可知OC⊥EF,最后由勾股定理可将EF的长求出.
【解答】解:连接OE和OC,且OC与EF的交点为M.
∵∠EDC=30°,
∴∠COE=60°.
∵AB与⊙O相切,
∴OC⊥AB,
又∵EF∥AB,
∴OC⊥EF,即△EOM为直角三角形.
在Rt△EOM中,EM=sin60°×OE=
×2=
,
∵EF=2EM,
∴EF=
.
故选B.
![]()
【点评】本题主要考查切线的性质及直角三角形的勾股定理.
科目:初中数学 来源: 题型:
如图,△ABC是等边三角形,P为BC上一动点(不与B、C重合),以AP为边作等边△APE,连接CE.
(1)求证:AB∥CE;
(2)是否存在点P,使得AE⊥CE?若存在,指出点P的位置并证明你的结论;若不存,请说明理由.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A、D两点作⊙O(用尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知直线y=kx(k>0)与双曲线y=
交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为( )
A.-6 B.-9 C.0 D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;
(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com