精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AEBD于点ECF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=CAD②∠DBC=30°;AE=AF=,其中正确结论的个数有(  )

A.1B.2C.3D.432

【答案】C

【解析】

解:在矩形ABCD中,∵∠BAD=90°,∵AEBD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故正确;

BC=4,CD=2,∴tan∠DBC==,∴∠DBC≠30°,故错误;

BD==,∵AB=CD=2,AD=BC=4,∵ABEDBA,∴,即,∴AE=;故正确;

CF平分BCD,∴∠BCF=45°,∴∠ACF=45°﹣∠ACB,∵ADBC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°﹣2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=,∴AF=,故正确;

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.

1)若他去买一瓶饮料,则他买到奶汁的概率是

2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图

(1)所示位置放置放置,现将RtAEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.

(1)求证:AM=AN;

(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,抛物线)与轴交于两点,点在该抛物线上(点与两点不重合),如果的三边满足,则称点为抛物线)的勾股点.

1)求证:点是抛物线的勾股点.

2)如图2,已知抛物线)与轴交于两点,点是抛物线的勾股点,求抛物线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图像轴上方的部分沿轴翻折到轴下方,图像的其余部分保持不变,若直线与该图像有两个公共点,则的取值范围______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yx2+bx+c与直线yx交于(11)和(33)两点,现有以下结论:b24c03b+c+60x2+bx+c时,x21x3时,x2+b1x+c0,其中正确的序号是(  )

A. ①②④B. ②③④C. ②④D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角三角形ABC中,点DE分别在边ACAB上,AGBC于点GAFDE于点FEAF=∠GAC.

1)求证ΔADEΔABC

2)若AD=3AB=5,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:

a0b0时:

2=a2+b≥0

a+b≥2,当且仅当a=b时取等号.

请利用上述结论解决以下问题:

1)请直接写出答案:当x0时,x+的最小值为   .当x0时,x+的最大值为   

2)若y=,(x>﹣1),求y的最小值;

3)如图,四边形ABCD的对角线ACBD相交于点OAOBCOD的面积分别为49,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图,抛物线的图象经过坐标原点O,且与轴的另一交点为(0).

(1)求抛物线的解析式;

(2)若直线与抛物线相交于点A和点B(A在第二象限),设点A′是点A关于原点O的对称点,连接A′B,试判断ΔAA′B的形状,并说明理由;

(3)在问题(2)的基础上,探究:平面内是否存在点P,使得以点ABA′P为顶点的四边形是菱形?若存在直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案