【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证ΔADE∽ΔABC;
(2)若AD=3,AB=5,求的值.
【答案】(1)见解析;(2).
【解析】
(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;
(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,即可求解.
解:(1)证明:在ΔABC中,
∵AG⊥BC于点G,AF⊥DE于点F
∴∠AFE=∠AGC=90°
∵∠EAF=∠GAC
∴∠AED=∠C
在ΔADE和ΔABC中,
∵∠AED=∠C,∠EAD=∠CAB
∴ΔADE∽ΔABC.
(2)解:在ΔAEF和ΔACG中,
∵∠AFE=∠AGC,∠EAF=∠GAC
∴ΔAEF∽ΔAGC
由(1)知ΔADE∽ΔABC
∴
又ΔAEF∽ΔAGC
∴
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=2∠C,AP和BQ分别为∠BAC和∠ABC的角平分线,若△ABQ的周长为18,BP=4,则AB的长为_____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,6),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)当C为抛物线顶点的时候,求的面积.
(3)是否存在质疑的点P,使的面积有最大值,若存在,求出这个最大值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=,其中正确结论的个数有( )
A.1个B.2个C.3个D.4个32
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若平面直角坐标系内的点 M 满足横、纵坐标都为整数,则把点 M 叫做“整点”.例如:P(1,0)、Q(2,-2)都是“整点”.抛物线 y=mx2-2mx+m-1(m>0)与 x 轴交于 A、 B 两点,若该抛物线在 A、B 之间的部分与线段 AB 所围成的区域(包括边界)恰有 6 个整点,则 m 的取值范围是( )
A. m B. m C. m D. m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AB=AD,对角线BD为⊙O的直径,AC与BD交于点E.点F为CD延长线上,且DF=BC.
(1)证明:AC=AF;
(2)若AD=2,AF=,求AE的长;
(3)若EG∥CF交AF于点G,连接DG.证明:DG为⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. “明天降雨的概率是50%”表示明天有半天都在降雨
B. 数据4,3,5,5,0的中位数和众数都是5
C. 要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式
D. 若甲、乙两组数中各有20个数据,平均数=10,方差s2甲=1.25,s2乙=0.96,则说明乙组数据比甲组数据稳定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中的点P和图形M,给出如下的定义:若在图形M存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.
(1)当⊙O的半径为2时,
①在点 中,⊙O的关联点是_______________.
②点P在直线y=-x上,若P为⊙O 的关联点,求点P的横坐标的取值范围.
(2)⊙C 的圆心在x轴上,半径为2,直线y=-x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com