【题目】如图,在正方形ABCD中,点O为对角线AC的中点,过O点的射线OM,ON分别交AB,BC于点E,F,且∠EOF=90°,BO,EF交于点P,则下面结论:
①图形中全等的三角形只有三对;②△EOF是等腰直角三角形;③正方形ABCD的面积等于四边形OEBF面积的4倍;④BE+BF=OA.
其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
【答案】C
【解析】
由正方形的性质和已知条件得出图形中全等的三角形有四对,得出①不正确;
由△AOE≌△BOF,得出对应边相等OE=OF,得出②正确;
由△AOE≌△BOF,得出四边形OEBF的面积=△ABO的面积=正方形ABCD的面积,③正确;
由△BOE≌△COF,得出BE=CF,得出BE+BF=AB=OA,④正确;
解:①不正确;
图形中全等的三角形有四对:△ABC≌△ADC,△AOB≌△COB,△AOE≌△BOF,△BOE≌△COF;理由如下:
∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠BAD=∠ABC=∠BCD=∠D=90°,∠BAO=∠BCO=45°,
在△ABC和△ADC中, ,
∴△ABC≌△ADC(SSS);
∵点O为对角线AC的中点,
∴OA=OC,
在△AOB和△COB中,
,
∴△AOB≌△COB(SSS);
∵AB=CB,OA=OC,∠ABC=90°,
∴∠AOB=90°,∠OBC=45°,
又∵∠EOF=90°,
∴∠AOE=∠BOF,
在△AOE和△BOF中,
,
∴△AOE≌△BOF(ASA);
同理:△BOE≌△COF;
②正确;理由如下:
∵△AOE≌△BOF,
∴OE=OF,
∴△EOF是等腰直角三角形;
③正确.理由如下:
∵△AOE≌△BOF,
∴四边形OEBF的面积=△ABO的面积=正方形ABCD的面积;
④正确.理由如下:
∵△BOE≌△COF,
∴BE=CF,
∴BE+BF=CF+BF=BC=AB=OA;
故选:C.
科目:初中数学 来源: 题型:
【题目】某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)
(参考数据:sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,有下列结论:①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中结论正确的个数是( )
A.3
B.4
C.1
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm , 小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为( )
A.20cm
B.15cm
C.10cm
D.随直线MN的变化而变化
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y= -+1与x轴、y轴分别交于点A、点B(O为坐标原点),将△ABO绕着点B逆时针旋转60°后,点A恰好落在点C处,那么点C的坐标为___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑧的直角顶点的坐标为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com