精英家教网 > 初中数学 > 题目详情

【题目】综合题
(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;

(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;

(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC= . (用含α与β的代数式表示)

【答案】
(1)解:∵CO⊥AB,

∴∠AOC=∠BOC=90°,

∵OE平分∠AOC,

∴∠EOC= ∠AOC= ×90°=45°,

∵OF平分∠BOC,

∴∠COF= ∠BOC= ×90°=45°,

∠EOF=∠EOC+∠COF=45°+45°=90°;


(2)解:∵OE平分∠AOD,

∴∠EOD= ∠AOD= ×(80+β)=40+ β,

∵OF平分∠BOC,

∴∠COF= ∠BOC= ×(80+β)=40+ β,

∠COE=∠EOD﹣∠COD=40+ β﹣β=40﹣ β;

∠EOF=∠COE+∠COF=40﹣ β+40+ β=80°;


(3)
【解析】(3)如图2,∵∠AOC=∠BOD=α,∠COD=β,

∴∠AOD=α+β,

∵OE平分∠AOD,

∴∠DOE= (α+β),

∴∠COE=∠DOE﹣∠COD=

如图3,∵∠AOC=∠BOD=α,∠COD=β,

∴∠AOD=α+β,

∵OE平分∠AOD,

∴∠DOE= (α﹣β),

∴∠COE=∠DOE+∠COD=

综上所述:

所以答案是:

【考点精析】利用角的平分线和角的运算对题目进行判断即可得到答案,需要熟知从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;角之间可以进行加减运算;一个角可以用其他角的和或差来表示.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】化简:3(﹣ab+2a)﹣(3a﹣b)+3ab.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小彬一家人在2013年8月到北京旅游了4天,这4天的日期数(如8月1日的日期数为1)之和是38,则他们一家在北京旅游最后一天的日期数是(
A.8号
B.9号
C.10号
D.11号

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B分别表示的数是6、-12、M、N、P为数轴上三个动点,它们同时都向右运动。点M从点A出发,速度为每秒2个单位长度,点N从点B出发,速度为点M的3倍,点P从原点出发,速度为每秒1个单位长度。

(1)当运动3秒时,点M、N、P分别表示的数是
(2)求运动多少秒时,点P到点M、N的距离相等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式中,正确的是(
A.|﹣0.1|<0
B. <﹣|﹣ ?|
C. >0.86
D.﹣2=﹣|﹣2|

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,今小磊取出一年到期的本金及利息时,交纳了4.5元利息税,则小磊一年前存入银行的钱为(
A.1000元
B.900元
C.800元
D.700元

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠B=90°,AB∥DF,AB=4cm,BD=10cm,点C是线段BD上一动点,点E是直线DF上一动点,且始终保持AC⊥CE.
(1)如图1试说明:∠ACB=∠CED.
(2)若AC=CE,试求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:

(1)这次活动一共调查了 名学生;

(2)补全条形统计图;

(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于 度;

(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是 人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCD的对角线AC,BD相交于点O,AOD=120°,AC=6,则ABO的周长为(  )

A. 18 B. 15 C. 12 D. 9

查看答案和解析>>

同步练习册答案