精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系中,二次函数yx22x3的部分图象与x轴交于点ABAB的左边),与y轴交于点C,连接BCD为顶点.

1)求∠OBC的度数;

2)在x轴下方的抛物线上是否存在一点Q,使△ABQ的面积等于5?如存在,求Q点的坐标;若不存在,说明理由;

【答案】(1)OBC=45(2)Q的坐标为(, ) (,)

【解析】

1)由抛物线已知,则可求三角形OBC的各个顶点,易知三角形形状及内角.
2)因为抛物线已固定,利用设点QAB的距离为a以及△ABQ的面积等于5,求出a的值,然后代入二次函数的表达式,即可求出Q点坐标.

(1)y=x22x3=(x3)(x+1)

∴当x=0时,y=3,当y=0时,x=1x=3

∴点C的坐标为(0,3),点B(3,0),点A(1,0)

OC=3OB=3,∴OB=OC,∴∠OBC=OCB

∵∠BOC=90,∴∠OBC=OCB=45

即∠OBC=45

(2)x轴下方的抛物线上存在一点Q,使△ABQ的面积等于5

∵点B(3,0),点A(1,0)

AB=4

设点QAB的距离为a

∵△ABQ的面积等于5

,得a=

∵点Qx轴下方,

∴点Q的纵坐标是

y=-代入y=x2-2x-3,得-=x2-2x-3

解得,x=

∴点Q的坐标为(, ) (,)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线经过坐标原点O,与x轴交于另一点A,顶点为B.求:

1)抛物线的解析式;

2AOB的面积;

3)要使二次函数的图象过点(100),应把图象沿x轴向右平移 个单位

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点EF.过点EEGBC,交ABG,则图中相似三角形有(

A. 7 B. 6 C. 5 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:平行四边形ABCD中,EAB中点,,连EFACG,则AGGC=______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),求Wx之间的函数表达式(利润=收入-成本);

(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,个边长为的相邻正方形的一边均在同一直线上,点,…分别为边,…,的中点,的面积为的面积为,…的面积为,则________.(用含的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:

(1)写出方程ax2+bx+c=0的两个根;

(2)写出不等式ax2+bx+c<0的解集;

(3)若方程ax2+bx+c+k=0有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O上的点,C是⊙O上的点,点DAB的延长线上,∠BCD=BAC.

(1)求证:CD是⊙O的切线;

(2)若∠D=30°,BD=2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点ABC,请回答:

1)该圆弧所在圆心D点的坐标为

2)扇形DAC的圆心角度数为

3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的高.(保留根号)

查看答案和解析>>

同步练习册答案