精英家教网 > 初中数学 > 题目详情

【题目】如图,ADABC的高,AE△ABC的角平分线,且∠BAC=90°∠C=2∠B.

求:(1∠B的度数; (2) ∠DAE的度数。

【答案】130°;(215°

【解析】

1)根据直角三角形两锐角互余列出方程,再整理成关于∠B的方程,然后求解即可;
2)根据直角三角形两锐角互余求出∠BAD,再求出∠BAE,然后根据∠DAE=BAD-BAE计算即可得解.

解:(1)∵∠BAC=90°
∴∠B+C=90°
∵∠C=2B
∴∠B+2B=90°
解得∠B=30°
2)∵AD是△ABC的高,
∴∠BAD=90°-B=90°-30°=60°
AE是△ABC的角平分线,
∴∠BAE=BAC=×90°=45°
∴∠DAE=BAD-BAE=60°-45°=15°

故答案为:(130°;(215°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知y+1x+2成正比例,且当x=4时,y=4

(1)y关于x的函数关系式;

(2)若点(a2)(2b)均在(1)中函数图像上,求ab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下

如图(1)∠DAB=90°,求证:a2+b2=c2

证明:连接DB,过点DDFBCBC的延长线于点F,则DF=b-a

S四边形ADCB=

S四边形ADCB=

化简得:a2+b2=c2

请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,EAB的中点,AD//EC,AED=B.

(1)求证:AED≌△EBC;

(2)当AB=6时,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.

(1)在图1中画出一个面积最小的¨PAQB;

(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90,AB=6,BC=8.以AB, BC,AC的中点A1,B1,C1构成△A1B1C1,以A1B,BB1,A1B1的中点A2,B2,C2构成△A2B2C2,……依次操作,阴影部分面积之和将接近 ( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1,A-2,0,B0,4, B 点为直角顶点在第二象限作等腰直角△ABC

1)求 C 点的坐标;

2)在坐标平面内是否存在一点 P,使△PAB △ABC 全等?若存在,直接写出 P 点坐标,若不存在,请说明理由;

3)如图 2, E y 轴正半轴上一动点, E 为直角顶点作等腰直角△AEM, M MNx 轴于 N, OE-MN 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】规定两数a、b之间的一种运算,记作(a,b):如果,那么(a,b)=c.

例如:因为,所以(2,8)=3.

(1)根据上述规定,填空:

(5,125)= ,(-2,4)= ,(-2,-8)=

(2)小明在研究这种运算时发现一个现象:,他给出了如下的证明:

,则,即

,即

请你尝试运用上述这种方法说明下面这个等式成立的理由.

(4,5)+(4,6)=(4,30)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD中,AD=3cm,CD=1cm,B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QPBA的延长线于点M,过MMNBC,垂足是N,设运动时间为t(s)(0<t<1),解答下列问题:

(1)是否存在时刻t,使点P在∠BCD的平分线上;

(2)设四边形ANPM的面积为S(cm),求St之间的函数关系式;

(3)是否存在某一时刻t,使四边形ANPMABCD面积相等,若存在,求出相应的t值,若不存在,说明理由;

(4)求t为何值时,ABN为等腰三角形

备用图

查看答案和解析>>

同步练习册答案