精英家教网 > 初中数学 > 题目详情

【题目】如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.

(1)在图1中画出一个面积最小的¨PAQB;

(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.

【答案】(1)画图见解析;(2)画图见解析.

【解析】

分析: (1)此题是开放性的命题,利用方格纸的特点及几何图形的面积计算方法割补法,把四边形PAQB的面积转化为三角形APQ,与三角形PBQ两个三角形的面积之和,而每个三角形都选择PQ为底,根据底一定,要使面积最小,则满足高最小,且同时满足顶点在格点上上即可;

(2)根据题意,画出的四边形是轴对称图形,不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.故可知此四边形是等腰梯形,根据方格纸的特点,作出满足条件的图形即可.

详解:

(1)

(2)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】探索规律:观察下面由组成的图案和算式,解答问题:

1+3=4=22

1+3+5=9=32

1+3+5+7=16=42

1+3+5+7+9=25=52

(1)请计算 1+3+5+7+9+11;

(2)请计算 1+3+5+7+9+…+19;

(3)请计算 1+3+5+7+9+…+(2n﹣1);

(4)请用上述规律计算:21+23+25+…+99.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高速公路养护小组乘车沿南北公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,-9+7,-15+10,-8+16

1)养护小组最后到达的地方在出发点的哪个方向?距离出发点多远?

2)若汽车耗油量为0.3/千米,则这次养护共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图,在中,已知的平分线交于点,求证:是等腰三角形.

2.阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如由图1可以得到 .请解答下列问题:

.写出图2中所表示的数学等式;

②.利用(1)中所得到的结论,解决下面的问题:已知,求的值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简与求值

1)求3x2+x+3x2x)﹣(6x2+x)的值,其中x=﹣6

2)先化简,再求值:53a2bab2)﹣4(﹣ab2+3a2b),其中|a+1|+b20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADABC的高,AE△ABC的角平分线,且∠BAC=90°∠C=2∠B.

求:(1∠B的度数; (2) ∠DAE的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由8个大小相等的小正方形构成的图案,它的四个顶点 EFGH分别在矩形ABCD的边ABBCCDDA上,若AB=4,BC=6,则DG的长是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线将这八个正方形分成面积相等的两部分,则该直线的解析式为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB

矩形的三边AEEDDB组成,已知河底ED是水平的,ED16mAE8m,抛物线的顶点CED

距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.

(1)求抛物线的解析式;

(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数

关系且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?

查看答案和解析>>

同步练习册答案