分析 方程组变形为$\left\{\begin{array}{l}{\frac{1}{a}+\frac{1}{b}=3}\\{\frac{1}{b}+\frac{1}{c}=4}\\{\frac{1}{a}+\frac{1}{c}=5}\end{array}\right.$,设$\frac{1}{a}$=x,$\frac{1}{b}$=y,$\frac{1}{c}$=z,则$\left\{\begin{array}{l}{x+y=3①}\\{y+z=4②}\\{x+z=5③}\end{array}\right.$,利用加减消元法即可求得.
解答 解:由:$\left\{\begin{array}{l}{\frac{ab}{a+b}=\frac{1}{3}}\\{\frac{bc}{b+c}=\frac{1}{4}}\\{\frac{ca}{c+a}=\frac{1}{5}}\end{array}\right.$可知$\left\{\begin{array}{l}{\frac{1}{a}+\frac{1}{b}=3}\\{\frac{1}{b}+\frac{1}{c}=4}\\{\frac{1}{a}+\frac{1}{c}=5}\end{array}\right.$,
设$\frac{1}{a}$=x,$\frac{1}{b}$=y,$\frac{1}{c}$=z,
则$\left\{\begin{array}{l}{x+y=3①}\\{y+z=4②}\\{x+z=5③}\end{array}\right.$
①-②得x-z=-1④,
与③组成方程组$\left\{\begin{array}{l}{x-z=-1}\\{x+z=5}\end{array}\right.$
解得$\left\{\begin{array}{l}{x=2}\\{z=3}\end{array}\right.$,
把x=2代入①得,y=1,
∴原方程组的解$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=1}\\{c=\frac{1}{3}}\end{array}\right.$.
点评 此题考查了解三元一次方程组,利用了换元、消元的思想,消元的方法有:代入消元法与加减消元法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com