【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣1,﹣3),C(3,n),交y轴于点B,交x轴于点D.
(1)求反比例函数y=和一次函数y=kx+b的表达式;
(2)连接OA,OC.求△AOC的面积.
【答案】(1)y=,y=x﹣2;(2)4.
【解析】
(1)先把A点坐标代入y=中求出m得到反比例函数的解析式是y=,再确定C的坐标,然后利用待定系数法求一次函数解析式;
(2)先确定D(2,0),然后根据三角形面积公式,利用S△AOC=S△OCD+S△AOD进行计算.
解:(1)把A(﹣1,﹣3)代入y=得m=﹣1×(﹣3)=3,
则反比例函数的解析式是y=,
当x=3代入y==1,则C的坐标是(3,1);
把A(﹣1,﹣3),C(3,1)代入y=kx+b得,解得,
所以一次函数的解析式是:y=x﹣2;
(2)x=0,x﹣2=0,解得x=2,则D(2,0),
所以S△AOC=S△OCD+S△AOD=×2×(1+3)=4.
科目:初中数学 来源: 题型:
【题目】我们把大于1的正整数的三次幂按一定规则“分裂”成若干个连续奇数的和,如,,,…若分裂后,其中有一个奇数是2019,则的值是( )
A.44B.45C.46D.47
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】聪聪参加我市电视台组织的“阳光杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有个选项,第二道单选题有4个选项,这两道题聪聪都不会,不过聪聪还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).
(1)如果聪聪两次“求助”都在第一道题中使用,那么聪聪通关的概率是 .
(2)如果聪聪将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b经过点A(5,0),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为( )
A. 36° B. 42° C. 45° D. 48°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l:y=kx+b(k≠0)的图象与x轴、y轴交于A、B两点,A(﹣2,0),B(0,1).
(1)求直线l的函数表达式;
(2)若P是x轴上的一个动点,请直接写出当△PAB是等腰三角形时P的坐标;
(3)在y轴上有点C(0,3),点D在直线l上,若△ACD面积等于4,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为2的正方形ABCD中,点P是边AD上的动点(点P不与点A、点D重合),点Q是边CD上一点,联结PB、PQ,且∠PBC=∠BPQ.
(1)当QD=QC时,求∠ABP的正切值;
(2)设AP=x,CQ=y,求y关于x的函数解析式;
(3)联结BQ,在△PBQ中是否存在度数不变的角?若存在,指出这个角,并求出它的度数;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,小明在大楼的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡角∠ABC=30°点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.
(1)山坡AB的坡度为 ;
(2)若山坡AB的长为20米,求大楼的窗口P处距离地面的高度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com