【题目】如图1,已知点A,B,C是⊙O上的三点,以AB,BC为邻边作ABCD,延长AD,交⊙O于点E,过点A作CE的平行线,交CD的延长线于F.
(1)求证:FD=FA;
(2)如图2,连接AC,若∠F=40°,且AF恰好是⊙O的切线,求∠CAB的度数.
【答案】(1)见解析;(2)∠CAB=30°.
【解析】
(1)连接CA,如图1,先证明∠1=∠2得到弧CE=弧AB,则弧EB=弧AC,所以∠BAE=∠E,然后证明∠3=∠4得到FA=FD;
(2)连接OA、OC,如图2,利用三角形内角和计算出∠FAD=∠FDA=70°,再根据平行线的性质得到∠E=∠FAD=70°,∠BAD=∠FDA=70°,接着根据圆周角定理得到∠AOC=2∠E=140°,利用等腰三角形的性质得到∠OAC=20°,然后利用切线的性质得到∠OAF=90°,于是计算∠BAF-∠OAF-∠OAC即可.
(1)证明:连接CA,如图1,
∵四边形ABCD为平行四边形,
∴AE//BC,AB//CF,
∴∠1=∠2,
∴弧CE=弧AB,
∴弧CE+弧BC=弧AB+弧BC,即弧EB=弧AC,
∴∠BAE=∠E,
∵AB//CF,
∴∠4=∠BAE,
∵AF//CE,
∴∠E=∠3,
∴∠3=∠4,
∴FA=FD;
(2)解:连接OA、OC,如图2,
∵∠F=40°,
∴∠FAD=∠FDA=70°,
∴∠E=∠FAD=70°,∠BAD=∠FDA=70°,
∵∠AOC=2∠E=140°,∠BAF=∠FAD+∠BAD =140°,
而OC=OA,
∴∠OAC=(180°﹣140°)=20°,
∵AF为切线,
∴OA⊥AF,
∴∠OAF=90°,
∴∠CAB=∠BAF﹣∠OAF﹣∠OAC=140°﹣90°﹣20°=30°.
科目:初中数学 来源: 题型:
【题目】定义:有一组邻边相等的凸四边形叫做“准菱形”.利用该定义完成以下各题:
(1) 理解
填空:如图1,在四边形ABCD中,若 (填一种情况),则四边形ABCD是“准菱形”;
(2)应用
证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明)
(3) 拓展
如图2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将Rt△ABC沿∠ABC的平分线BP方向平移得到△DEF,连接AD,BF,若平移后的四边形ABFD是“准菱形”,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,点为坐标原点,抛物线交轴于两点,交轴于点,直线过抛物线的顶点,交轴于点,且.
(1)求和的值;
(2)如图2,点在点和点之间的抛物线上,连接,过点作于点,过点作轴交于点,点在直线右侧的轴上,连接,且,设点的横坐标为,线段的长为,求与之间的函数关系式;
(3)如图3,在(2)的条件下,连接,过点作于点,延长交于点,点在上,连接,若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点.
(1)求这个二次函数的解析式;
(2)点是直线上方的抛物线上一动点,是否存在点,使得的面积最大?若存在,求出点的坐标;若不存在,说明理由;
(3)点是直线上方的抛物线上一动点,过点作轴于点.是否存在点,使以点,,为顶点的三角形与相似?若存在,直接写出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正六边形ABCDEF的边长为,点G,H,I,J,K,L依次在正六边形的六条边上,且AG=BH=CI=DJ=EK=FL,顺次连结G,I,K,和H,J,L,则图中阴影部分的周长C的取值范围为( )
A.6≤C≤6B.3≤C≤3C.3≤C≤6D.3≤C≤6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】南宁海吉星水果批发市场李大姐家的水果店销售三华李,根据前段时间的销售经验,每天的售价(元/箱)与销售量(箱)有如表关系,且已知 与 x 之间的函数关系是一次函数.
每箱售价x(元) | 68 | 67 | 66 | 65 | … | 40 |
每天销量y(箱) | 40 | 45 | 50 | 55 | … | 180 |
(1)求y 与x的函数解析式;
(2)三华李的进价是 40 元/箱,如果设每天获得的盈利为 元,要使该店每天获得最大盈利,则每箱售价多少元?
(3)4 月份(按 30 天算)连续阴雨,销售量减少.该店决定采取降价销售,故在(2)的条件下销售了 18 天之后,三华李开始降价,售价比之前下降了,同时三华李的进价降为 29 元/箱,销售量也因此比原来每天获得最大盈利时上涨了,降价销售了 12 天的三华李销售总盈利比降价销售前的销售总盈利少 5670 元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图:
请根据以上不完整的统计图提供的信息,解答下列问题:
(1)小张同学共调查了_____名居民的年龄,扇形统计图中a=_____;
(2)补全条形统计图,并注明人数;
(3)若在该辖区中随机抽取一人,那么这个人年龄是60岁及以上的概率为_____;
(4)若该辖区年龄在0~14岁的居民约有3500人,请估计该辖区居民人数是_____人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形中,,,点是边上一点,连接,把沿折叠,点落点为,当为直角三角形时,的长为__________;在折叠过程中,的最小值为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com