【题目】如图,已知正六边形ABCDEF的边长为,点G,H,I,J,K,L依次在正六边形的六条边上,且AG=BH=CI=DJ=EK=FL,顺次连结G,I,K,和H,J,L,则图中阴影部分的周长C的取值范围为( )
A.6≤C≤6B.3≤C≤3C.3≤C≤6D.3≤C≤6
科目:初中数学 来源: 题型:
【题目】如图,⊙O为等边△ABC的外接圆,AD∥BC,∠ADC=90°,CD交⊙O于点E.
(1)求证:AD是⊙O的切线;
(2)若DE=2,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知直线与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.
(1)求抛物线的解析式;
(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;
(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形的边轴,垂足为点,顶点在第二象限,顶点在轴的正半轴上,反比例函数(,)的图象同时经过顶点,,若点的横坐标为10,,则的值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某市九年级学生的体育成绩(成绩均为整数),随机抽取了部分学生的体育成绩并分段(A:20.5~22.5;B:22.5~24.5;C:24.5~26.5;D:26.5~28.5;E:28.5~30.5)统计,得到统计图、表如图.
分数段 | A | B | C | D | E | 合计 |
频数/人 | 12 | 36 | 84 | b | 48 | c |
频率 | 0.05 | a | 0.35 | 0.25 | 0.20 | 1 |
根据上面的信息,回答下列问题:
(1)统计表中,a= ,b= ,c= ;将频数分布直方图补充完整.
(2)小明说:“这组数据的众数一定在C中.”你认为小明的说法正确吗? (选填“正确”或“错误”).
(3)若成绩在27分及以上定为优秀,则该市30000名九年级学生中体育成绩为优秀的学生人数约有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知点A,B,C是⊙O上的三点,以AB,BC为邻边作ABCD,延长AD,交⊙O于点E,过点A作CE的平行线,交CD的延长线于F.
(1)求证:FD=FA;
(2)如图2,连接AC,若∠F=40°,且AF恰好是⊙O的切线,求∠CAB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 与 轴交于和,与 轴交于 点,点关于抛物线的对称轴的对称点为点.
(1)求此抛物线的解析式和对称轴.
(2)如图 2,当点在抛物线的对称轴上运动时,在直线上是否存在点,使得以点、、、为顶点的四边形为平行四边形?若存在,请求出点 的坐标;若不存在,请说明理由.
(3)如图 3,当点、、三点共圆时,请求出该圆圆心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,AB是⊙O的直径,CD∥AB,
(1)如图1,证明:AC=BD;
(2)如图2,连接CO并延长交⊙O于点E,OP⊥AD,垂足为P,证明:BE=2OP;
(3)如图3,在(2)的条件下,连接DO,点F为DO延长线上一点,若∠AFO+∠ABE=180°,过点B作BG⊥OD,垂足为G,点N为上一点,AM⊥EN,垂足为M,若GF=4,OP=,AM=2NE,求AM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象和一次函数的图象都过点,过点P作y轴的垂线,垂足为A,O为坐标原点,的面积为1.
(1)求反比例函数和一次函数的解析式;
(2)设反比例函数图象与一次函数图象的另一交点为M,过M作x轴的垂线,垂足为B,求五边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com