【题目】根据下列要求,解答相关问题.
(1)请补全以下求不等式﹣2x2﹣4x>0的解集的过程.
①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).
②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为 ;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.
③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.
【答案】(1)作图见解析;(2)x1=0,x2=﹣2,(3)x≥3或x≤﹣1.
【解析】试题分析:①利用描点法即可作出函数的图象;
②当y=0时,解方程求得x的值,当y>0时,就是函数图象在x轴上方的部分,据此即可解得;
③仿照上边的例子,首先作出函数y=x2﹣2x+1的图象,然后求得当y=4时对应的x的值,根据图象即可求解.
试题解析:①图所示:
;
②方程﹣2x2﹣4x=0即﹣2x(x+2)=0,
解得:x1=0,x2=﹣2;
则方程的解是x1=0,x2=﹣2,
图象如图1;
③函数y=x2﹣2x+1的图象是:
当y=4时,x2﹣2x+1=4,解得:x1=3,x2=﹣1.
则不等式的解集是:x≥3或x≤﹣1.
科目:初中数学 来源: 题型:
【题目】我校七年级某班准备买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副元,乒乓球每盒元,经商谈后,甲商店每买一副乒乓球拍赠一盒乒乓球,乙商店全部按定价的折优惠这个班级需要球拍副,乒乓球盒().
(1)分别求甲、乙两家商店购买这些商品所箭的费用(用含x的代数式表示);
(2)当时,购买所需商品去哪家商店合算?请通过计算说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一平面内,若一个点到一条直线的距离不大于1,则 称这个点是该直线的“邻点”.在平面直角坐标系中,已知点,,,过点作直线平行于 轴,并将进行平移,平移后点分别对应点.
(1)点 (填写是或不是)直线的“邻点”,请说明理由;
(2)若点刚好落在直线上,点的横坐标为,点落在轴上,且的面积为,求点的坐标,判断点是否是直线的“邻点”,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是1个单位长度.的三个顶点,,.
(1)将以点为旋转中心旋转,得到,请画出的图形.
(2)将以为旋转中心,逆时针旋转,得到,请画出的图形.
(3)线段的长度为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象过点A(0,3)和点B(3,0),且与正比例函数的图象交于点P.
(1)求函数的解析式和点P的坐标.
(2)画出两个函数 的图象,并直接写出当时的取值范围.
(3)若点Q是轴上一点,且△PQB的面积为8,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知抛物线经过点 A (-2,0)、 B (4,0)、 C (0,-8),抛物线 y = a x 2 + b x + c (a≠0)与直线 y = x -4交于 B , D 两点.
(1)求抛物线的解析式并直接写出 D 点的坐标;
(2)点 P 为抛物线上的一个动点,且在直线 BD 下方,试求出△ BDP 面积的最大值及此时点 P 的坐标;
(3)点 Q 是线段 BD 上异于 B 、 D 的动点,过点 Q 作 QF ⊥ x 轴于点 F , 交抛物线于点 G . 当△ QDG 为直角三角形时,求点 Q 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班要购买一批篮球和足球.已知篮球的单价比足球的单价贵40元,花1500元购买的篮球的个数与花900元购买的足球的个数恰好相等.
(1)篮球和足球的单价各是多少元?
(2)若该班恰好用完1000元购买的篮球和足球,则购买的方案有哪几种?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com