精英家教网 > 初中数学 > 题目详情

【题目】在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.

(1)若点P在线段CD上,如图1.
①依题意补全图1;
②判断AH与PH的数量关系与位置关系并加以证明;
(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)

【答案】
(1)

解:①如图1;

②解法一:如图1,连接CH,

∵四边形ABCD是正方形,QH⊥BD,

∴∠HDQ=45°,

∴△DHQ是等腰直角三角形.

∵DP=CQ,

在△HDP与△HQC中.

∴△HDP≌△HQC(SAS),

∴PH=CH,∠HPC=∠HCP.

∵BD是正方形ABCD的对称轴,

∴AH=CH,∠DAH=∠HCP,

∴∠AHP=180°﹣∠ADP=90°,

∴AH=PH,AH⊥PH.

解法二:如图1,连接CH,

∵QH⊥BD,

∴∠QHB=∠BCQ=90°,

∴B、H、C、Q四点共圆,

∴∠DHC=∠BQC,

由正方形的性质可知∠DHC=∠AHD,

由平移性质可知∠BQC=∠APD,

∴∠AHD=∠APD,

∴A、H、P、D四点共圆,

∴∠PAH=∠PDH=45°,∠AHP=∠ADP=90°,

∴△HAP是等腰直角三角形,

∴AH=PH,AH⊥PH.


(2)

解法一:如图2,

∵四边形ABCD是正方形,QH⊥BD,

∴∠HDQ=45°,

∴△DHQ是等腰直角三角形.

∵△BCQ由△ADP平移而成,

∴PD=CQ.

作HR⊥PC于点R,

∵∠AHQ=152°,

∴∠AHB=62°,

∴∠DAH=17°.

设DP=x,则DR=HR=RQ=

∵tan17°=,即tan17°=

∴x=

解法二:

由(1)②可知∠AHP=90°,

∴∠AHP=∠ADP=90°,

∴A、H、D、P四点共圆,

又∠AHQ=152°,∠BHQ=90°,

∴∠AHB=152°﹣90°=62°,

由圆的性质可知∠APD=∠AHB=62°,

在Rt△APD中,∠PAD=90°﹣62°=28°,

∴PD=ADtan28°=tan28°.


【解析】(1)①根据题意画出图形即可;
②连接CH,先根据正方形的性质得出△DHQ是等腰直角三角形,再由SAS定理得出△HDP≌△HQC,故PH=CH,∠HPC=∠HCP,由正方形的性质即可得出结论;
(2)根据四边形ABCD是正方形,QH⊥BD可知△DHQ是等腰直角三角形,再由平移的性质得出PD=CQ.作HR⊥PC于点R,由∠AHQ=152°,可得出∠AHB及∠DAH的度数,设DP=x,则DR=HR=RQ,由锐角三角函数的定义即可得出结论.
【考点精析】利用平行四边形的判定与性质对题目进行判断即可得到答案,需要熟知若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“五一”小长假,小颖和小梅两家计划从“北京天安门”“三亚南山”“内蒙古大草原”三个景区中任意选择一景区游玩,小颖和小梅制作了如下三张质地大小完全相同的卡片,背面朝上洗匀后各自从中抽去一张来确定游玩景区(第一人抽完放回洗匀后另一人再抽去),则两人抽到同一景区的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(﹣4,0),B(0,4),在x轴上确定点M,使三角形MAB是等腰三角形,则M点的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】LED灯具有环保节能、投射范围大、无频闪、使用寿命较长等特点,在日常生活中,人们更倾向于LED灯的使用,某校数学兴趣小组为了解LED灯泡与普通白炽灯泡的销售情况,进行了市场调查:某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:

LED灯泡

普通白炽灯泡

进价(元)

45

25

标价(元)

60

30


(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可以获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?
(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景
在数学活动课上,张老师要求同学们拿两张大小不同的矩形纸片进行旋转变换探究活动.如图1,在矩形纸片ABCD和矩形纸片EFGH中,AB=1,AD=2,且EF>AD,FG>AB,点E是AD的中点,矩形纸片EFGH以点E为旋转中心进行逆时针旋转,在旋转过程中会产生怎样的数量关系,提出恰当的数学问题并加以解决.
解决问题
下面是三个学习小组提出的数学问题,请你解决这些问题.

(1)“奋进”小组提出的问题是:如图1,当EF与AB相交于点M,EH与BC相交于点N时,求证:EM=EN.
(2)“雄鹰”小组提出的问题是:在(1)的条件下,当AM=CN时,AM与BM有怎样的数量关系,说明理由.
(3)“创新”小组提出的问题是;若矩形EFGH继续以点E为旋转中心进行逆时针旋转,当∠AEF=60°时,请你在图2中画出旋转后的示意图,并求出此时EF将边BC分成的两条线段的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,∠DCE=118°,∠AEC的角平分线EF与GF相交于点F,∠BGF=132°,则∠F的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)所示,AOBCOD都是直角.

1)试猜想AODCOB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.

2)当COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A是抛物线y= x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.

(1)当m= 时,求S的值.
(2)求S关于m(m≠2)的函数解析式.
(3)①若S= 时,求 的值;
②当m>2时,设 =k,猜想k与m的数量关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍.

(1)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹);
(2)求出(1)中所作三角形外接圆的周长.

查看答案和解析>>

同步练习册答案