【题目】如图①,已知等腰直角中,BD为斜边上的中线,E为DC上的一点,且于G,AG交BD于F.
(1)求证:AF=BE.
(2)如图②,当点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明。
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)首先证明AD=BD,再证明∠DAF=∠DBE,可利用ASA定理判定△AFD≌△BED,进而得到AF=BE;
(2)方法与(1)类似,利用AAS证明△AFD≌△BED,可得AF=BE.
(1)∵△ABC是等腰三角形,BD为斜边上的中线,
∴BD=ADAC,∠ADB=90°,
∴∠1+∠GAD=90°.
∵AG⊥BE于G,
∴∠2+∠DBE=90°.
∵∠1=∠2,
∴∠DAF=∠DBE.
在△AFD和△BED中,
∵,
∴△AFD≌△BED(ASA),
∴AF=BE;
(2)①的结论还能成立.证明如下:
∵△ABC是等腰三角形,BD为斜边上的中线,
∴BD=ADAC,∠ADB=90°,
∴∠DBE+∠DEB=90°.
∵AG⊥BE于G,
∴∠GBF+∠F=90°.
∵∠DBE=∠GBF,
∴∠F=∠DEB.
在△AFD和△BED中,
∵,
∴△AFD≌△BED(AAS),
∴AF=BE;
科目:初中数学 来源: 题型:
【题目】有甲乙两名采购员去同一家饲料公司分别购买两次饲料,两次购买饲料价格分别为m元/千克和n元/千克,且m≠n,两名采购员的采购方式也不同,其中甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.
(1)甲、乙所购饲料的平均单价各是多少?(用字母m、n表示)
(2)谁的购货方式更合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边边长为8cm,点是的中点,点在射线上运动,以 为边在右侧作等边,作射线交射线于点,连接.
(1)当点在线段(不包括端点)上时,求证:;
(2)求证:平分;
(3)连接,点在移动过程中,线段长的最小值等于 (直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为全力助推句容建设,大力发展句容旅游,某公司拟派A、B两个工程队共同建设某区域的绿化带.已知A工程队2人与B工程队3人每天共完成310米绿化带,A工程队的5人与B工程队的6人每天共完成700米绿化带.
(1)求A队每人每天和B队每人每天各完成多少米绿化带;
(2)该公司决定派A、B工程队共20人参与建设绿化带,若每天完成绿化带总量不少于1480米,且B工程至少派出2人,则有哪几种人事安排方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司购进一种化工原料若干千克,价格为每千克元,物价部门规定其销售单价每千克不高于元且不低于元,经市场调查发现,日销售量(千克)是销售单价(元)的一次函数,且当时,,当时,.
求与的函数解析式;
求该公司销售该原料日获利(元)与销售单价(元)之间的函数解析式;
求当销售单价为多少元时,该公司日获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E是BC边上的一个动点,连接AE,将线段AE绕点A逆时针旋转90°,得到AF,连接EF,交对角线BD于点G,连接AG.
(1)根据题意补全图形;
(2)判定AG与EF的位置关系并证明;
(3)当AB=3,BE=2时,求线段BG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com